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of devices into circuits.[13–15] Notable recent 
examples in this direction of 2D integrated 
circuits (ICs) include an image sensor 
with 48 molybdenum disulfide (MoS2) 
photoconductors[16] and digital logic cir-
cuits[17,18] integrating as many as 115 MoS2 
field-effect transistors (FETs).[19]

In this article, we expand the functional 
complexity of 2D ICs through a tenfold 
increase in the device integration scale. 
Specifically, we have developed an analog 
optoelectronic processor comprised of 
1024 (32 × 32) MoS2 photo-FETs arranged 
in a crossbar array structure. Through cap-
turing of optical images into electrical data 
(like the eye and optic nerve), and sub-
sequent recognition of this data (like the 
brain) via analog in-memory computing, 
our optoelectronic processor emulates 
the two core functions of human vision 
(Figure 1a).

For the front-end optical image sensing, 
the crossbar array is operated as an active 
pixel sensor array. Our MoS2 FETs mani-
fest photoconductivity that persists even 
after light removal. With this persistent 

photo conductivity (PPC)[20–23] serving as an optoelectronic 
memory, the array captures and stores an input optical scene 
into electrical data (FET conductance values) with the image 
resolution far higher than the prior TMD image sensor with  
48 pixels.[16] For the back-end recognition of this acquired 
image, we recycle the crossbar array to perform analog con-
volutional neural network (CNN) computing. To this end, we 
optically program new FET conductance values, representing 
the synaptic weight values of the CNN, into the crossbar array 
with the PPC imaging method above. The electrically converted 
scene data from the front-end optical image sensing are then 
fed as a vector into this updated crossbar array, which executes 
vector–matrix multiplications, the canonical CNN operation, 
in an analog manner to recognize the image. We demonstrate 
the operation of our optoelectronic analog machine vision pro-
cessor for 1000 handwritten digits from the Modified National 
Institute of Standards and Technology (MNIST) database with 
94% accuracy.

Analog machine vision has been actively pursued by various 
material systems beyond 2D materials. Most notably, crossbar 
arrays of oxide memristors or phase-change memories,[24–29] 
which act as analog vector–matrix multiplication engines, have 
profoundly shaped the field of analog neural network com-
puting for back-end image recognition, overcoming the large 

2D semiconductors, especially transition metal dichalcogenide (TMD) 
monolayers, are extensively studied for electronic and optoelectronic 
applications. Beyond intensive studies on single transistors and photo­
detectors, the recent advent of large-area synthesis of these atomically thin 
layers has paved the way for 2D integrated circuits, such as digital logic 
circuits and image sensors, achieving an integration level of ≈100 devices 
thus far. Here, a decisive advance in 2D integrated circuits is reported, 
where the device integration scale is increased by tenfold and the functional 
complexity of 2D electronics is propelled to an unprecedented level. 
Concretely, an analog optoelectronic processor inspired by biological vision is 
developed, where 32 × 32 = 1024 MoS2 photosensitive field-effect transistors 
manifesting persistent photoconductivity (PPC) effects are arranged in a 
crossbar array. This optoelectronic processor with PPC memory mimics two 
core functions of human vision: it captures and stores an optical image into 
electrical data, like the eye and optic nerve chain, and then recognizes this 
electrical form of the captured image, like the brain, by executing analog 
in-memory neural net computing. In the highlight demonstration, the MoS2 
FET crossbar array optically images 1000 handwritten digits and electrically 
recognizes these imaged data with 94% accuracy.

2D semiconductors, in particular transition metal dichalcoge-
nide (TMD) monolayers, have taken the nano and condensed 
matter research communities by storm over the past decade.[1–3] 
Having direct bandgaps, these atomically thin materials are 
suitable for electronic and optoelectronic works, with their 
stacks into various heterostructures promising a wealth of 
engineered electronic and optoelectronic properties.[3–8] While 
single transistors and photodetectors built from 2D materials 
have already garnered significant research interest,[9–12] recent 
advances in large-area synthesis of TMD monolayers have 
opened up an exciting possibility to integrate a large number 
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power budget of the otherwise enormously successful digital 
neural net paradigm. At the same time, various material sys-
tems, including organics and perovskites, have been employed 
to develop front-end in-memory image sensors,[30–34] so far inte-
grating up to 100 pixels. Our 2D crossbar array brings together 
front-end optical image sensing (with high-resolution and full-
frame readout) and back-end image recognition (via analog in-
memory computing) in a unified material platform, exploiting 
all necessary electronic, optoelectronic, and memory traits avail-
able to the 2D semiconducting material, thereby advancing the 
pursuit toward integrated analog machine vision.

Figure 1b shows the fabricated 32 × 32 array of n-FETs using 
a large-area MoS2 monolayer synthesized by metal–organic 
chemical vapor deposition (MOCVD) (see Method S1 and 
Figure S1, Supporting Information, for more detailed informa-
tion on the synthesized monolayer MoS2; and see Figure 1b and 
Method S2, Supporting Information, for the detailed fabrica-
tion process). The length and width of each FET channel are 
20 and 50 µm, respectively (Figure  1c). Each FET has a back 
gate in lieu of a top gate so that its channel can be exposed to 
light from above (Figure  1d). 32 metal (90 nm Au, 10 nm Cr) 
row lines contact the FETs’ drain nodes and 32 metal column 

lines contact the FETs’ source nodes, both from below the MoS2 
layer. Each FET channel thus serves as a cross-point conductor 
between its row (drain) and column (source) lines (inset of 
Figure 1c). Another set of 32 metal row lines tap the FETs’ back 
gates for biasing. The overall crossbar circuit schematic is in 
Figure S2a, Supporting Information.

This crossbar array of photo-FETs is used first as a front-end 
optical image sensor and is then reused, after re-initialization, 
for analog vector–matrix multiplications for back-end image 
recognition (Figure 1a). In the image sensing mode, the input 
scene, stored as FET conductance values via PPC, is read out 
row by row. At each read cycle, we positively bias only 1 drain 
row to activate the 32 FETs connected to it, with the remaining 
31 drain rows connected to ground (all source nodes are at 
virtual ground; Figure S2b, Supporting Information), and 
measure column currents. Each column current is then from 
a single FET at the cross point of that column and the activated 
drain row. We repeat this procedure through 32 read cycles, 
sequentially activating each row and measuring column cur-
rents. In this way, we can measure the channel conductance of 
all FETs with an effective frame readout time of ≈1 s.

Vector–matrix multiplications for the back-end image recog-
nition mode are analog, or physical, operations based on Ohm’s 
and Kirchhoff's laws: If, for example, the entire array is used 
as an FET conductance matrix and all the drain rows are fed 
with voltages, the resulting 32 column currents, or the 1 × 32 
column current vector, is the dot product of the transpose of 
the 32 × 1 drain row voltage vector and the 32 × 32 conduct-
ance matrix (Figure S2c, Supporting Information). This simple 
analog vector–matrix multiplication, consisting of applying the 
input row voltages and recording the output column currents, 
contrasts the complex digital vector–matrix multiplication that 
involves many multiply-and-accumulate operations and con-
sumes far more power. For this reason, such analog vector–
matrix multiplication has been a key pursuit in neural network 
acceleration, notably with crossbar arrays of oxide or phase 
change memristors.[24,25,29] It is this analog matrix multiplica-
tion that we expand to the 2D PPC memory crossbar array in 
this work.

The crossbar array chip is packaged and mounted on a 
custom-designed printed circuit board (PCB), which hosts aux-
iliary electronics such as digital-to-analog converters (DACs) to 
provide voltage inputs and biases to the drain and gate rows, 
and analog-to-digital converters (ADCs) to collect column cur-
rents (Method S3 and Figure S3, Supporting Information). The 
crossbar array and PCB electronics are programmed and auto-
mated together. By operating the crossbar array in the image 
sensing mode but with no light, we characterize the electrical 
performance of all 1024 FETs. 946 FETs work properly while  
78 fail (yield: 92%). For the 946 working FETs, the on/off ratio 
is ≈104, the threshold voltage is 0.02 ± 0.23 V, and the mobility 
is about 1 cm2 V−1 s−1, as is typical with chemically synthesized 
MoS2 monolayers (Figure S4, Supporting Information).
Figure  2a shows the measured channel photocurrent 

(Iph)—the overall current minus the bias (dark) current—from 
an example MoS2 n-FET in the array, where a 1.4 W m−2, 532 nm  
light is illuminated for 1 min. Here, the FET is biased with a 
gate voltage VG of −6 V, a drain voltage VD of 0.3 V, and a source 
voltage VS of 0 V, which places the FET in the subthreshold 

Figure 1.  MoS2 photo-FET crossbar array as an analog optoelectronic 
machine vision processor. a) Our MoS2 optoelectronic processor mimics 
two core functions of the human vision system: front-end image sensing, 
like the retina and optic nerve, and back-end recognition, like the brain. 
b,c) Optical microscopy images of the 32 × 32 MoS2 photo-FET crossbar 
array (b) and of a unit pixel (c). The inset shows a schematic of the unit 
pixel, or cross point conductor. d) 3D rendering of the interconnect 
arrangement for a single pixel.
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region, exhibiting a bias current of a few hundred pA 
(Figures S4a and S5, Supporting Information; in both the image 
sensing mode described here and the image recognition mode 
presented later, we use subthreshold biasing for low-power oper-
ation). When exposed to light, the channel current rises from its 
bias value (the measured responsivity and detectivity are as large 
as 150 A W−1 and 1.1 × 1010 Jones, depending on the bias: Text S1 
and Figure S6, Supporting Information). After light removal, the 
photocurrent (≈500 pA) decays very slowly (Text S2, Supporting 
Information),[20,35] with an extrapolation predicting that ≈20% of 
the peak photocurrent would remain after 10 years (Figure S7, 
Supporting Information). This is because much of the photo-
excited carriers remain trapped at defect and impurity sites in 
the FET channel to reduce its threshold voltage.[22,23,36] We can 
electrically erase this PPC memory, or prolonged photogating, 
by applying ≈7 V to the FET gate to remove the trapped carriers 
(see Text S2 and Figure S8, Supporting Information).[12,21,37]

The front-end image sensing exploits this PPC memory at 
the array scale to acquire and store an optical image as elec-
trical data (FET conductance values). Since most of the 78 FET  
failures are concentrated in two rows due to interconnect 
issues, we do not use these two rows, and to capture the image 
in a square frame, we also omit the use of two functioning col-
umns. We hence capture an image using the 30 × 30 array with 
886 working pixels and 14 dead pixels. To read out the captured 
image, we measure the channel currents of all array FETs by 
sequentially applying 0.1 V to each drain row for ≈2 ms with 
the remaining drain rows set at 0 V (VG and VS are at −6 V and 
0 V for all FETs) and recording the column currents. A single 
scan of the entire frame then takes 60 ms. We repeat this scan  
multiple times to improve the image quality via averaging, 
resulting in the effective full-frame readout time of ≈1 s.

Figure 2b shows an example image sensing result. The input 
image of the inset of Figure  2b is divided into 64 segments, 
and each segment is imaged by the crossbar array. After pro-
jecting a given segment image onto the 30 × 30 array for 5 s 
with a given color filter (blue, green, or red), we read out the 
captured image at every ≈1 s, starting from the moment we 
close the projector shutter (t  = 0). Then till t  = 60 s, we read 
60 images stored in the array. This 65 s procedure is repeated 
for each of the 3 color filters, generating 60 images for each 
color. We then combine three different color images at each 
frame time, t, to produce a composite color image at that time 
t. Note that before starting the 65 s procedure for a new color, 
we electrically erase PPC memories from the previous color 
imaging. The image read out at t = 0 s (Figure 2b, top) is from 
the peak photocurrents, whereas the images read out at t = 10, 
30, and 60 s (Figure 2b, bottom) are the ones stored in the PPC 
memory array. It is apparent from Figure 2b that these stored 
images remain consistent over the course of time. This con-
sistency is quantitatively verified in Figure  2c; the standard 
deviation of the normalized pixel intensity difference between  
the captured and input image across the 886 pixels × 64 seg-
ments for each RGB color channel stays within 7% for all  
60 time frames, without noticeable variation.

The variation of the FET mobilities and threshold volt-
ages across the array (Figure S4b, Supporting Information) 
results in appreciable pixel-to-pixel photo response variations. 
These effects have already been calibrated out in the images 
of Figure 2b, where such calibration is routinely performed in 
the complementary metal-oxide semiconductor image sensors 
in consumer electronics as well. For the calibration procedure, 
see Method S4 and Figure S9, Supporting Information. Finally, 
in the images of Figure  2b, for each of the 14 dead pixels in 

Figure 2.  High-resolution, full-frame, front-end optical image sensing with PPC. a) The photocurrent (Iph = I − Idark) of an MoS2 FET measured at 
VD = 0.3 V, VG = −6 V, and VS = 0 V for 4 min, with the light (532 nm, 1.4 W m−2) illuminated for the first 1 min. b) 240 × 240 calibrated composite image 
captured with peak photocurrents at t = 0 s after 5 s exposure to the “peppers” input image of the inset (top) and with PPC currents at t = 10, 30, 60 s 
(bottom) after closing the shutter at t = 0 s. c) The average (solid) and standard deviation (shaded) of the normalized pixel intensity difference between 
the captured and input image across 886 pixels × 64 segments for each RGB color channel as a function of time after closing the shutter. Time points 
corresponding to the images in (b) are indicated by squares.
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the 30 × 30 array, we interpolate using the calibrated intensities 
from the neighboring pixels.

For the back-end image recognition, the crossbar array is 
used as an FET conductance matrix. We optically encode FET 
conductance values as desired matrix elements (e.g., synaptic 
weights), using the PPC image sensing technique described 
above. The conductance of each FET can be increased toward 
a desired value by increasing the cumulative light dosage, 
which is determined by the exposure time and light intensity 
(Figure S10, Supporting Information). This PPC increase can 
be done in a piecewise manner, by repeating the cycle of a 
short illumination and a PPC measurement (Figure S11, Sup-
porting Information). Since the n-FET conductance can only 
increase with light, such iteration with the fine control over 
the light duration and intensity is helpful to obtain a desired 
FET conductance without overshoot. This iterative encoding 

is performed simultaneously across all pixels by exposing the 
array to a composite image of different pixel light at each itera-
tion cycle (Method S5, Supporting Information). Figure  3a 
shows an example of such iterative optical encoding across 
for four MoS2 FETs in the array to drive them into four dif-
ferent well-defined conductance states after ≈40 iteration cycles 
(Figure 3a, inset). Using this image-based, array-wide iterative 
optical encoding, we can program the crossbar array into a 
desired matrix for analog vector–matrix multiplication.

Before demonstrating the CNN-based image recognition 
involving a more complex sequence of analog vector–matrix 
multiplications, we first assess the accuracy of the optical pro-
gramming and the analog matrix multiplication by performing 
relatively simple image filtering tasks.[24] To this end, we first 
use the crossbar array in the image sensing mode to capture 
a 120 × 120 grayscale image of the “cameraman” into the FET 

Figure 3.  Optical programming of the conductance matrix and its application in image filtering. a) Iterative programming of four pixels. Their FET cur-
rents relative to the reference pixel (I − Iref) are plotted with time. The reference pixel is not exposed during encoding to establish a baseline conductance. 
b) 120 × 120 calibrated composite “cameraman” image captured with peak photocurrents at t = 0 s after 5 s exposure (left) and schematic illustration of 
the image filtering with the 9 × 4 conductance matrix (four filters) in the crossbar array. The cameraman test image in (b) and (c) is used with permis-
sion from MIT. c) Four measured filtered images (top)—identity, edge-detection, embossing, and blur—and four simulated filtered images (bottom).
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conductance values (Figure  3b, left, which is the image cap-
tured at t = 0; see Figure S12, Supporting Information, for the 
images stored up to t  = 60 s). Subsequently, after saving the 
image data, we electrically reinitialize the array and optically 
encode a 9 × 4 portion of the crossbar array into a conductance 
matrix (Figure 3b, right). The four columns of this 9 × 4 matrix 
represent four independent filters: identity (F1), edge-detection 
(F2), embossing (F3), and normalized blur (F4) (Figure S13a, 
Supporting Information). Then, we choose a 3 × 3 conduct-
ance patch from the camera man image data (Figure  3b, left, 
dashed line) and convert it into a 9 × 1 voltage vector (V1 to 
V9 in Figure  3b). This 9 × 1 voltage vector is then fed to the 
9 × 4 conductance matrix for analog vector–matrix multiplica-
tion, resulting in four column currents (I1 to I4 in Figure 3b). 
By sliding the 3 × 3 patch across 120 × 120 image frame and 
repeating the vector–matrix multiplication described above, 
we obtain a 118 × 118 matrix for each of I1 through I4. These 
four 118 × 118 current matrices (Figure  3c) are the outcomes 
of convolving the four analog filter kernels with the captured 
image (Method S6, Supporting Information). Upon inspection, 
they apparently show identity, detected edges, embossing, and 
blurriness. To be more quantitative, we compare these filtering 
results from the analog vector–matrix multiplications to the 
simulated filtering results, which are the digital vector–matrix 
multiplications with the target filter values (Figure S13b, Sup-
porting Information). For all four tests, the Pearson correlation 
coefficient of the simulated and experimental outputs exceeds 
0.97 (Figure S13c, Supporting Information). This attests to the 
accuracy in both the optical encoding and the analog vector–
matrix multiplications.

We now demonstrate the image sensing and recogni-
tion of 1000 hand-written digits from the MNIST database  
(100 hand-written shapes for each digit of “0” through “9”). We 
first capture the 1000 hand-written digit images by operating 
the crossbar array in the image sensing mode, with each cap-
tured electrical image data (FET conductance values) having a 
size 13 × 13. See Figure S14, Supporting Information, for ten  
captured image examples (one for each digit).

Subsequently, we operate the crossbar array as a matrix multi
plication engine to recognize any one of these 1000 imaged  
shapes, which we describe using the captured image “3” of 
Figure 4a as an example. To this end, after saving the imaged 
handwritten digit data, we electrically erase the PPC memories 
and optically program a 16 × 10 conductance matrix that rep-
resents a convolutional layer of the CNN, where we obtain the 
desired matrix element values from the off-line learning in the 
software domain (Method S7, Supporting Information). This 
16 × 10 matrix represents ten convolutional filters, each sized 
16 × 1 (their 4 × 4 versions are shown in Figure  4a,b). Then, 
we choose a 4 × 4 patch in the acquired 13 × 13 conductance-
valued image for the digit “3” and convert it into a 16 × 1 
voltage vector. This 16 × 1 voltage vector is fed to the 16 × 10 
conductance matrix for the analog vector–matrix multiplica-
tion, resulting in 10 column currents (Figure  4a, blue dashed 
line). As we repeat the above process by sliding the 4 × 4 patch 
throughout the 13 × 13 MNIST digit “3” image data and col-
lect the ten column currents each time, we generate ten 10 × 10 
current-valued matrices or feature maps (Figure 4a, red dashed 
line and Figure 4c; see Method S6, Supporting Information).

As the next step, these ten 10 × 10 current-valued feature 
maps are down-sampled in the software max-pooling layer and 
converted into a 40 × 1 voltage vector. We then once again re-
initialize the crossbar array and optically program a 40 × 10 con-
ductance matrix as a fully connected layer of the CNN (again, 
we obtain the desired matrix elements from software learning, 
see Method S7, Supporting Information). As we feed the down-
sampled 40 × 1 voltage vector into this 40 × 10 conductance 
matrix (because the 40 × 10 matrix does not directly fit into the 
32 × 32 crossbar array, we split it to two 20 × 10 matrices, and we 
also accordingly split the input 40 × 1 voltage vector), the analog 
vector–matrix multiplication results in 10 column currents. 
These 10 column currents, along with their soft-maxed outputs 
that represent the Bayesian probabilities for all digits, inform the 
decision that the image belongs to the digit “3” (Figure 4d).

The above analog CNN computation with the example of the 
captured image “3” is repeated for each of the 1000 captured 
images. Ten feature map examples for each digit are shown 
in Figure S15a, Supporting Information. With 100 different 
images for each digit, we calculate the correlation coefficient 
between the feature maps generated using the crossbar array 
and the feature maps simulated using the target weight values; 
the average of the resulting 10 correlation coefficients exceeds 
0.98 (Figure S15b, Supporting Information). Figure S16, Sup-
porting Information, shows outputs of the fully connected layer 
for 10 example digit shapes. Finally, Figure  4e shows the sta-
tistics of the experimental decisions for the 1000 digit images, 
which reaches 94% accuracy in the image classification.

In our recognition process, the crossbar matrix subarrays 
execute 31 790 analog arithmetic operations (addition and multi
plication) per input image and consume an average power of 
only ≈1.65 µW. This calculation is to provide a sense of the low 
power consumption of the analog neural net computing on the 
2D FET crossbar subarray, so the power cost of peripheral elec-
tronics such as the ADCs and DACs is not included.

In summary, we have developed an atomically thin opto-
electronic machine vision processor by integrating 1024 MoS2 
photo-FETs with PPC memory in a crossbar structure—the 
largest scale IC to date in TMD-based electronics. As a front-end 
image sensor, this crossbar array acquires and stores an input 
optical scene in the form of FET PPC values. For the back-end 
recognition of this acquired image, the crossbar array is optically 
programmed with new conductance values representing the 
synaptic weights of the neural net matrices, and then this pro-
grammed crossbar array executes analog voltage-vector–conduct-
ance-matrix multiplication to recognize the image. Such analog 
matrix multiplication is an active pursuit in achieving low-power 
neural network operation, and our work demonstrates this 
analog in-memory computation with the largest 2D crossbar 
array to date, enabling high-level tasks, such as image recogni-
tion. Mimicking two core functions of the human vision system, 
this processor visually recognized 1000 handwritten digits with 
an accuracy of 94%, highlighting an unprecedented advance in 
the functional complexity of 2D electronics. Overall, our work 
demonstrates the application of 2D materials in building large-
scale in-memory sensor arrays as well as non-von-Neuman 
analog in-memory computing systems. The circuit presented in 
this work can be readily modified and expanded to new architec-
tures for a variety of sensing and analog computing tasks.
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Figure 4.  Visual recognition of 1000 hand-written digit images. a) Image sensing and recognition process for an example of hand-written digit “3”, 
showing the front-end optical–electrical conversion layer for image sensing, the convolution layer to generate feature maps, and the fully connected 
layer to make a decision. b) Grayscale maps of the ten convolutional filters with each filter represented in 4 × 4 shape. c) Convolutional layer output 
feature maps with each feature map of size 10 × 10 for the input digit “3”. d) Fully connected layer output magnitude (black) and the corresponding 
Bayesian probabilities (red). e) Visual recognition results for 1000 MNIST images (100 images for each digit of “0” to “9”) using the crossbar array. 
Red dashed line indicates the recognition accuracy performed in the software domain.
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