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Abstract. We investigate phonon induced electronic dynamics in the ground and

excited states of the negatively charged silicon-vacancy (SiV−) centre in diamond.

Optical transition line widths, transition wavelength and excited state lifetimes are

measured for the temperature range 4 K–350 K. The ground state orbital relaxation

rates are measured using time-resolved fluorescence techniques. A microscopic model

of the thermal broadening in the excited and ground states of the SiV− centre is

developed. A vibronic process involving single-phonon transitions is found to determine

orbital relaxation rates for both the ground and the excited states at cryogenic

temperatures. We discuss the implications of our findings for coherence of qubit states

in the ground states and propose methods to extend coherence times of SiV− qubits.
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1. Introduction

Colour centres in diamond have emerged as attractive systems for applications in

quantum metrology, quantum communication, and quantum information processing

[1, 2, 3]. Diamond has a large band gap which allows for optical control, and it can

be synthesised with high purity enabling long coherence times as was demonstrated for

nitrogen-vacancy (NV−) spin qubits [4]. Among many colour centres in diamond [5, 6],

the negatively charged silicon-vacancy (SiV−) centre stands out due to its desirable

optical properties. In particular, near transform limited photons can be created with

high efficiency due to the strong zero-phonon line (ZPL) emission that constitutes ∼70 %

of the total emission. SiV− centres can also be created with a narrow inhomogeneous

distribution that is comparable to the transform limited optical line width [7]. These

optical properties, due to the inversion symmetry of the system which suppresses

effects of spectral diffusion, recently enabled demonstration of two-photon interference

from separated emitters [8] that is a key requirement for many quantum information

processing protocols [9, 10, 11, 12].

Interfacing coherent optical transitions with long-lived spin qubits is a key challenge

for quantum optics with solid state emitters [13, 14, 15, 16, 17]. This challenge may be

addressed using optically accessible electronic spins in SiV− centres [18]. It has recently

been demonstrated that coherent spin states can be prepared and read out optically

[19, 20], although the spin coherence time was found to be limited by phonon-induced

relaxation in the ground states [19]. Here we present the first systematic study of
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the electron-phonon interactions that are responsible for relaxation within the ground

and excited states of the SiV− centre. This is achieved by measuring the temperature

dependence of numerous processes within the centre. A comprehensive microscopic

model is then developed to account for the observations. In Section 4.1 we discuss the

implications of these phonon processes for spin coherences in the SiV− ground state,

and identify approaches that could extend the spin coherences.

The SiV− centre consists of an interstitial silicon atom in a split-vacancy

configuration with D3d symmetry as illustrated in Figure 1(a) [21]. This symmetry

gives rise to an electronic level structure consisting of ground (2Eg) and excited (2Eu)

states that both have E symmetry and double orbital degeneracy. The degenerate

orbital states are occupied by a single hole with S = 1/2 [22, 23, 24, 25], leading to both

orbital and spin degrees of freedom. In the absence of off-axis strain or magnetic fields,

the spin-orbit interaction (∼ λg,u
so SzLz) determines the eigenstates with well defined

orbital and spin angular momentum [24]. Optical and phononic transitions between

these eigenstates couple only to the orbital degree of freedom and are spin conserving.

We therefore focus on the orbital dynamics within the ground and excited states, which

can each be described as an effective two-level system consisting of two orbital states

{|Lz = ±1〉 = |eg,u± 〉} for a given spin projection as shown in Figure 1(b)[24]. Phonons

can introduce vibronic coupling between |e+〉 and |e−〉 orbitals, resulting in population

transfer between orbitals at rates γg,u+,− [26, 27]. This effect, also called the dynamic

Jahn-Teller effect, has been observed in the excited states of the NV− centre [28, 29]

where a similar orbital degeneracy is present.

2. Experimental results

2.1. Excited states

The spin-orbit interaction results in four optical dipole transitions, labelled A–D in order

of increasing wavelength, centred around∼737 nm at cryogenic temperatures [30, 31, 32].

At liquid helium temperatures, the optical line widths are broader for transitions A and

B than for the lower energy transitions C and D [7]. This was attributed to thermal

relaxation reducing the effective lifetime of the upper branch via the decay rate γu
−,

which is faster than γu
+ by the Boltzmann factor γu

− = γu
+ exp(λu

so/kBT ) [30, 31] .

To probe the microscopic mechanism of the orbital relaxation in the excited states,

the temperature dependence of the line width of transition D was measured for individual

SiV− centres. Since these SiV− centres exhibit negligible spectral diffusion [7], the

measured optical line widths Γ(T ) correspond to homogeneous broadening mechanisms

associated with depolarisation and dephasing: Γ(T ) = γr +γnr(T )+γu
+(T )+γd(T ). The

non-radiative decay rate γnr(T ) has a very weak temperature dependence, as discussed

later in Section 2.3, leading to a small contribution compared to the other rates for all

temperature regions of interest. The most significant temperature dependence comes

from the relaxation rates within the excited states: γu
+(T ) and γd(T ). As will be shown
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structure picture

(a)

Si

C

(b)

2Eg

|eg+〉 |↑〉

|eg−〉 |↑〉

2Eu

|eu+〉 |↑〉

|eu−〉 |↑〉

λgso ∼ 47GHz

λuso ∼ 258GHz

γr

γnr

A B C D

γg+ γg−

γu+ γu−

Figure 1. Molecular structure and electronic dynamics of SiV−. (a) The SiV−

centre consists of a silicon atom centred between two neighbouring vacant lattice sites.

(b) The optical transitions are between states of E symmetry with opposite parity

(2Eg,
2Eu). γr (γnr) are radiative (non-radiative) decay rates out of the excited states.

Straight (curved) lines denote the radiative (non-radiative) transitions. In both the

ground and excited states, the four-fold degeneracy is partially lifted by the spin-

orbit interaction λg,uso [23, 24]. Every level illustrated here is a spin-1/2 doublet (e.g.

{|e−〉 |↑〉 , |e+〉 |↓〉} for the lowest energy level), and for clarity only the spin-up levels

are drawn. Implications of this study for the spin sublevels are discussed in Section

4.1. The horizontal dashed line denotes the unidentified level (either an additional

electronic level or excited vibrational state of 2Eg) involved in the non-radiative decay

between the ground and excited states.

in Section 3.2, the optical transition line width is dominated by relaxation rates in the

excited states with little contribution from the ground states.

For temperatures between 4 K to 50 K, the optical transition line width was

measured using photoluminescence excitation in a continuous flow cryostat, where a

weak probe laser was scanned across transition D and fluorescence in the phonon-

sideband (PSB) was detected. At higher temperatures, 532 nm excitation was used

and emission line widths were measured with a spectrometer (Princeton Instruments

Acton 2500 equipped with a Pixis 100 cooled CCD-array and a 1596 mm−1 grating)

giving a resolution of 16 GHz. To measure fundamental properties of the SiV− centre,

a bulk diamond sample containing highly uniform defect sites and low strain was used

in these experiments. It was a low strain HPHT type-IIa diamond with a {100} surface

on which a 60 µm layer incorporating SiV− was created by microwave-plasma chemical-

vapour-deposition (MPCVD). This sample was used in previous publications [7, 8] and

shows a narrow inhomogeneous distribution for the SiV− optical transitions.

Figure 2 shows the full width at half maximum (FWHM) line widths (determined

from Lorentzian fits) measured for single SiV− sites in a 200×200 µm2 region containing
28Si. Above ∼ 70 K the line width scales as the cube of the temperature (Γ =

(103 + 0.12 · (T/K)3) MHz). However for low temperatures (< 20 K), the behaviour
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Figure 2. Line width of transition D measured for different temperatures. Each line

width was determined by Lorentzian fits for multiple sites. The green fit corresponds

to a cubic scaling over the high temperature range (> 70 K) after the spectrum has

merged to two peaks and one peak at > 120 K. At low temperatures (< 20 K) the

pink fit represents a linear scaling seen in the inset. For the temperature range in

between these two regimes the scaling of the line width crosses over from linear to

cubic behaviour.

deviates from T 3 and is better approximated by a linear dependence on temperature

(Γ = (−1.05 + 24.26 · (T/K)) MHz) saturating at about 4 K to the lifetime limited

line width. Early studies on nanodiamonds have measured the T 3 dependence of the

line width on temperature, but were not able to resolve this linear contribution due

to a combination of inhomogeneous broadening and spectral resolution limits [33]. It

is shown in Section 3 that the observed T and T 3 mechanisms result from first- and

second-order transitions due to linear electron-phonon interactions with E-symmetric

phonon modes.

2.2. Ground states

Relaxation within the ground state doublet, γg
+ in Figure 1 (b), was probed directly using

pulsed excitation and time-resolved fluorescence measurements. Transitions C and D

form an optical Λ-system which allows ground state populations to be optically pumped.

For these experiments a second diamond sample was used in which the properties and

orientation of the SiV− centres were known from earlier studies [23]. The sample is a

low strain high-pressure high-temperature (HPHT) diamond observed through a {111}
surface with a low density of in-grown SiV− centres. A laser was tuned to transition
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Figure 3. Ground state orbital relaxation time (T1) measurements. (a) The

pulse sequence used to measure the T1 of the ground states. A single laser was

amplitude modulated to pump (first pulse) and probe (second pulse) transition D

at each temperature. Photoluminescence (PL) intensity corresponds to the bright

state population. (b) The height h of the leading edge peak plotted for different wait

times τ between the pulses. An exponential fit to the recovery of the height gives the

orbital ground state relaxation time T1. (c) Measured orbital relaxation rate, γg+, as

a function of temperature. A fit (pink) to a single-phonon relaxation model (Section

3.2) shows good agreement with the data by introducing an offset on the temperature

(1/T1 = 0.0099 · n(∆, T − 2.26 K)). (d) Bright state population, h(0)/2a, after optical

pumping shown for different temperatures.

D and 80 ns pulses were generated using an electro-optical amplitude modulator with

a measured extinction ratio of up to 20 dB. The signal was detected by counting the

photon arrival times in relation to the laser pulses using a time-tagged data acquisition

card (FAST ComTec MCS26A) giving a time resolution of up to 200 ps.

At the start of each laser pulse we observed a fluorescence peak that decayed to a

steady state level. For the first laser pulse, the peak height a corresponds to the thermal

population in the bright state (|eg+〉 |↑〉 or |eg−〉 |↓〉 ) which is ∼ 50 % for the temperatures

in our measurements. The decay of this initial peak when the laser is on corresponds

to optical pumping into the dark state (|eg−〉 |↑〉 or |eg+〉 |↓〉). After a dark interval τ ,

the dark state relaxes back to the bright state, leading to a recovery of peak height h

for subsequent pulses. The peak height, h(τ), exhibits a simple exponential recovery

indicating a single characteristic relaxation time, T1, as shown in Figure 3(a,b). This

measurement was repeated for a single SiV− centre at various temperatures between



CONTENTS 7

4.5 K and 22 K and the relaxation rate was found to scale linearly with temperature

(Figure 3)(c). The longest T1 time was measured at the lowest temperatures to be

T1(5 K) = 39± 1 ns.

We note that the steady state fluorescence level under laser excitation, h(0), is

determined by a competition between the optical pumping rate and thermalization rates

(1/T1). With increasing temperature, the thermalization rate increases (Figure 3(c))

while the optical pumping rate remains nearly constant at saturation. This leads to a

reduced measured peak contrast (h(0)/2a, Figure 3(d)) with increasing temperature

showing that the ground state of the SiV− centre cannot be polarised at elevated

temperatures.

2.3. Excited state lifetimes

The results presented so far have only highlighted the processes within the ground and

excited state doublets. The transition rates from excited to ground states also have a

temperature dependence which can be probed by measuring the fluorescence lifetime

of the excited state as a function of temperature. Previous experiments have reported

excited state lifetimes in the ∼ 1 ns to 4 ns range along with various estimates of the

quantum yield [30, 32, 33, 34, 35, 7]. Figure 1(b) shows potential radiative (γr) and

non-radiative (γnr) processes taking place at the optical energy scale that determine the

excited state lifetimes and the quantum yield. The total decay rate from the excited

states, γt(T ) = 1/τ0(T ) = γr + γnr(T ), is a combination of a constant radiative (γr) and

a temperature dependent non-radiative rate (γnr(T )).

In an attempt to identify the non-radiative process, we measured the lifetime of the
2Eu excited states as a function of temperature from 5 K to 350 K. At each temperature,

10 separate single SiV− centres were excited using a pulsed 532 nm laser with a 80 MHz

repetition rate and the measured time traces were fitted using a single exponential decay.

The measured temperature dependence of τ0(T ) = 1/γt(T ) is shown in Figure 4(a). The

excited state lifetime was found to increase as temperature was decreased down to 50 K,

where it saturated to a constant level. These results suggest there is a finite non-radiative

rate γnr at room temperature, while the saturation below 50 K does not necessarily imply

γnr(T < 50 K) = 0 as there might still be a finite spontaneous non-radiative rate at zero

temperature. The observed temperature dependence in Figure 4(a) can be described by

the Mott-Seitz model for non-radiative relaxation, τ0(T ) = τ0(T = 0 K)(1 + αe
− ∆E

kBT )−1,

with an activation energy of ∆E = 55± 2 meV and α = 3.3±0.3 [36]. Our measurements

do not, however, provide enough information to distinguish whether the system decays

from 2Eu directly to a higher vibrational state of 2Eg, or to an unidentified electronic

level closer to 2Eu in energy. Whilst there exists some ab initio [25] and experimental

[37] evidence of an additional electronic level below the excited 2Eu level, this evidence

conflicts with the simple molecular orbital model of the centres electronic structure

[21, 22, 23, 24], which predicts no such additional level. Future studies involving

spectroscopy of the 2Eg → 2Eu absorption PSB and single-shot readout capability of
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Figure 4. (a) Fluorescence lifetime (τ0) of the excited states as a function of

temperature. At each temperature, τ0(T ) was measured for 10 emitters. The error

bars denote the standard deviation of the τ0(T ) distribution. The fit (magenta) line

corresponds to the Mott-Seitz model. (b) Optical transition wavelength of transition

C determined from Lorentzian fits to the spectrum and excitation scans. A cubic

(magenta) dependence on temperature (∼ T 3) is in good agreement with the data,

unlike quadratic (dashed, orange) and quartic (dashed, brown) fits. (c,d) The measured

excited and ground state splittings as a function of temperature. The quadratic fits

based on the model in Section 2.4 are shown in magenta. The dashed green lines in

(b), (c) and (d) are the best fits obtained using the pure thermal expansion mechanism

explained in the text.

SiV− electronic states might help identify the relaxation paths from the 2Eu and dark

states of SiV− centres [38].

2.4. Optical line positions

The line positions of all four optical transitions were determined using the Lorentzian fits

to the measurements described in Section 2.1. The spectrometer was calibrated with

respect to a wavemeter, allowing us to consistently reproduce transition wavelengths

across the entire temperature range. For simplicity, only transition C is shown

in Figure 4(b). Fitting with a free temperature exponent results in ∆λ = 19.2 ·
(T/K)2.78±0.05, in close agreement with a cubic temperature dependence. Figure 4(b)



CONTENTS 9

compares fits of the form ∆λ ∼ Tα for α = 2, 3, 4 as well as a model based on thermal

expansion described below. Our observation of T 3 scaling differs marginally from earlier

measurements made on nanodiamonds [33]. For temperatures at which the linewidth was

narrow enough to resolve individual transitions, the ground and excited state splittings

could also be obtained from the spectrum. We observe that the measured splittings,

which correspond to the spin-orbit interaction at low temperature, are reduced with

increasing temperature for both the excited (Figure 4(c)) and ground (Figure 4(c))

states.

In diamond, the temperature shifts of optical lines have two distinct origins: thermal

expansion and electron-phonon interactions [39, 40]. The shift of the transition energy

due to thermal expansion has the form δEexp.(T ) = A ·P (T ), where A is the hydrostatic

pressure shift of the transition energy, P (T ) = −B
∫ T

0
e(x)dx is the negative pressure

of thermal expansion, B is the diamond bulk modulus and e(T ) is the bulk thermal

expansion coefficient [39, 40]. Whilst B and e(T ) are well-known for diamond [41], the

pressure shift A of the SiV− optical transition has not been measured. The dashed

green line in Figure 4(b) is the best fit of the line shift obtained using the single

fit parameter A of the thermal expansion mechanism, and it is clear this does not

account for the observed shift. The shift of the transition energy due to electron-

phonon interactions typically arises from quadratic interactions with A1-symmetric

phonon modes and produces a T 4 dependence [42], which is also inconsistent with

our observations. Furthermore, a linear combination of shifts caused by these two

mechanisms is not able to produce a good fit to our observations. It is shown in Section 3

that the atypical T 3 shift arises from second-order linear interactions with E-symmetric

phonon modes.

The temperature reductions of the ground and excited state splittings can also

arise from thermal expansion and electron-phonon interactions [40]. The dashed green

lines in Figure 4(c) and (d) are the best thermal expansion fits obtained by introducing

pressure shift parameters of the spin-orbit splittings, and as above it is clear, at least for

Figure 4(c), that another mechanism must be involved in the reduction of the splittings.

Similarly, the T 4 dependence of the quadratic interactions with A1-symmetric phonon

modes and its linear combination with the thermal expansion shift do not satisfactorily

fit the observations. We will show in the next section that the T 2 dependence of the

spin-orbit splittings are also consequences of second-order linear interactions with E-

symmetric phonon modes.

3. Microscopic model of the electron-phonon processes

In this section we develop a microscopic model of the electron-phonon processes within

the ground and excited electronic levels that are summarised in Figure 5. The model

successfully describes the observed temperature variations of optical line width, line

position and spin-orbit splittings. In each case, the electron-phonon processes are

consequences of the linear Jahn-Teller interaction between the E-symmetric electronic
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(a)

|e−〉

|e+〉

∆ γ+ γ−

γd

(b) (c) (d)

Figure 5. Electron-phonon processes within the ground and excited states. (a) The

relevant rates in the problem are γ+ and γ−, which denote the transition rates between

states that determine the orbital T1 relaxation time, and γd which denotes the rate of

a pure dephasing process. These rates can originate from a (b) single-phonon direct

process; (c) two-phonon Raman process; or (d) two-phonon elastic scattering process.

These processes are analogous to (b) resonant absorption, (c) Raman transitions, and

(d) AC Stark shift in atomic physics.

states and E-symmetric acoustic phonon modes [27, 43, 44].

As discussed in the introduction, spin projection and orbital angular momentum are

good quantum numbers and can be treated separately in the situation of low magnetic

fields and strain [24]. Since the optical transitions and electron-phonon interactions

are spin conserving, we can focus on the orbital degrees of freedom of the ground and

excited levels. For a given spin state, the effective zero-field orbital Hamiltonian takes

the following form for both the ground and excited levels

H0 = ±1

2
~∆σz , (1)

where σz is the usual Pauli operator for orbital states in the {|e+〉 , |e−〉} basis, ~∆ is

the magnitude of the relevant spin-orbit splitting, which is +~∆ for |↑〉 and −~∆ for

|↓〉.

3.1. Electron-phonon interaction

For the SiV− centre the interaction between the E-symmetric orbital states {|e+〉 , |e−〉}
and phonon modes of E symmetry is described most easily if the E modes are

linearly transformed to be circularly polarised. With this transformation, the phonon

Hamiltonian and the linear electron-phonon interaction are

ĤE =
∑
p,k

~ωk a†p,kap,k (2)

V̂E =
∑
k

~χk[σ+(a−,k + a†−,k) + σ−(a+,k + a†+,k)] , (3)
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where χk is the interaction frequency for a single phonon, σ+ (σ−) is the raising

(lowering) operator for orbital states, and a†p,k (ap,k) is the creation (annihilation)

operator for phonons with polarisation p = {−,+} and wavevector k. For

acoustic modes in bulk diamond, the interaction frequency and density of modes are

approximately |χk(ω)|2 ≈ χω and ρ(ω) = ρω2, respectively, where the overbar denotes

the average over all modes with frequency ωk = ω and χ and ρ are proportionality

constants [28, 45]. Note that interactions with A-symmetric modes have not been

included as they do not couple the states within the ground and excited electronic

levels.

3.2. First-order electron-phonon transitions

Treating V̂E as a time-dependent perturbation, the first-order transitions between the

orbital states involve the absorption or emission of a single E phonon whose frequency

is resonant with the splitting ∆ (see Figure 5 (b)). The corresponding transition rates

are

γ+ = 2π
∑
k

n−,k|χk|2δ(∆− ωk)

γ− = 2π
∑
k

(n+,k + 1)|χk|2δ(∆− ωk) , (4)

where np,k is the occupation of the phonon mode with polarisation p and wavector k.

Assuming acoustic phonons, performing the thermal average over initial states and the

sum over all final states leads to

γ+ = 2πχ ρ∆3n(∆, T )

γ− = 2πχ ρ∆3[n(∆, T ) + 1] . (5)

For temperatures T > ~∆/kB, Eq. (5) can be approximated by a single relaxation rate

with a linear temperature dependence

γ+ ≈ γ− ≈
2π

~
χρ∆2kBT . (6)

Hence, the one-phonon transitions lead to the relaxation of population between

the orbital states as well as the dephasing of the states that are linearly dependent on

temperature. The measurements presented in Figure 2 and Figure 3 demonstrated

a clear linear dependence of broadening for temperatures below 20 K, but greater

than the spin orbit splitting (T > ~∆/kB ∼ 2.4 K). We therefore conclude that the

relaxation mechanisms are dominated by a resonant single phonon process at liquid

helium temperatures for both the ground and the excited states. Eq. (6) also shows

that the relaxation rate is ∼ ∆2, where ∆ is the spin-orbit splitting in the zero-field

limit. The ∆2 scaling explains why the phonon relaxation processes are much faster in

the excited levels for which the splittings are larger compared with the ground states.
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3.3. Second-order electron-phonon transitions

It was seen in Figure 2 that the line broadening deviated from its linear temperature

dependence above about 20 K (T � ~∆/kB), suggesting that higher order processes

involving two phonons start dominating the relaxation rates. Given the form of the

electron-phonon interaction in Eq. (3), the only allowed two-phonon processes are

those where the initial and final orbital states are identical. Therefore, the inelastic

Raman-type scattering processes [Figure 5(c)] that are dominant for NV− centres [28],

are suppressed in SiV− and the elastic Raman-type scattering processes [Figure 5(d)]

dominate instead. The elastic scattering rate for |e−〉 is

γd− = 2π~2
∑
k,q

n−,k (n+,q + 1)|χk|2|χq|2∣∣∣∣ 1

∆− ωk
+

1

∆ + ωk

∣∣∣∣2 δ(∆− ωk + ωq) . (7)

Performing the thermal average over the initial states and the sum over all final states

leads to

γd− = 2π~2

∫ Ω

0

n(∆ + ω, T )(n(ω, T ) + 1)|χk(∆ + ω)|2 |χq(ω)|2∣∣∣∣ 1

−ω
+

1

∆ + ω

∣∣∣∣2 ρ(∆ + ω)ρ(ω)dω , (8)

where Ω is the Debye frequency of diamond. Assuming acoustic modes and that the

temperatures are such that only modes with frequencies Ω � ω � ∆ contribute

significantly to the integral, to lowest order in ∆, the rates become

γd− ≈ γd+ ≈ 2π~2∆2χ2ρ2

∫ ∞
0

n(ω, T )(n(ω, T ) + 1)ω2dω

=
2π3

3~
∆2χ2ρ2k3

BT
3 . (9)

Hence, the two-phonon elastic scattering process contribute to the dephasing of the

orbital states and have rates that are proportional to ∼ T 3, matching the observed line

width behaviour in Figure 2. Therefore our microscopic model shows perfect agreement

with the measurements and we can understand the orbital relaxation process as a

combination of a single phonon mixing between the orbital states and a two-phonon

dephasing process.

For SiV− centres under high strain (larger than the spin-orbit interaction), the

orbital eigenstates {|ex〉, |ey〉} no longer have well defined angular momentum. Under

such conditions, the inelastic Raman process shown in Figure 5(c) becomes allowed,

which results in a competing orbital relaxation rate that scales as ∼ T 5.

3.4. Spin-orbit splitting shifts

The electron-phonon interactions also perturb the energies of the orbital states at

second-order. The second-order energy shifts δE− ( δE+ ) for states |e−〉 ( |e+〉 ) can
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be expressed in a simple form using the linear phonon {x, y} polarisation basis. The

energy shift due to phonon modes with wavevector k and occupation nx(y),k are

δE−(x(y), k) = ~2χ2
k

(
nx(y), k

ω −∆
−
nx(y), k + 1

ω + ∆

)
δE+(x(y), k) = ~2χ2

k

(
nx(y), k

ω + ∆
−
nx(y), k + 1

ω −∆

)
, (10)

where each polarisation contributes independently. Assuming acoustic modes and that

the temperatures are such that only modes with frequencies Ω � ω � ∆ contribute

significantly to the integral, then correct to lowest order in ∆, the thermal averages of

the shifts in the orbital energies over all (acoustic) vibrational levels are

δE− = ~2χρ

(
−1

3
Ω3 +

∆

2
Ω2 +

π2k2
B

3~2
T 2

)
δE+ = −~2χρ

(
1

3
Ω3 +

∆

2
Ω2 +

π2k2
B

3~2
T 2

)
. (11)

This yields a temperature shift in the spin-orbit splitting

δ∆ = δE+ − δE− = −~2χρ∆

(
Ω2 +

2π2k2
B

3~2
T 2

)
, (12)

that is proportional to T 2 and a temperature independent mean energy of the orbital

states (δE++δE−)/2 = −~2χρΩ3/3. This correctly predicts the observed T 2 dependence

of the fine structure splittings in Figure 4 (c,d) , but it fails to predict the T 3 dependence

of the optical line position in Figure 4(b).

3.5. Optical line position

The failure of the above analysis to predict the temperature shift of the optical line

position is due to a well known problem in the treatment of the linear Jahn-Teller

interaction [46]. The problem arises from the implicit choice of rectangular mode

coordinates for the zero-order vibrational wavefunctions of the perturbative analysis. In

rectangular coordinates, the vibrational wavefunction of a pair (Qx,Qy) of degenerate

E modes is of the form ψi(Qx)ψj(Qy), where i and j are the independent vibrational

quantum numbers of the modes. Since the rectangular coordinates do not match the

cylindrical symmetry of the linear Jahn-Teller vibrational potential, the rectangular

vibrational wavefunctions are a poor choice of zero-order basis [47]. As a consequence,

much higher perturbative expansions are required to correctly predict a shift in the

optical line position.

A superior choice of basis is obtained by transforming to polar coordinates

(Qx,Qy)→(ρ,φ), within which the vibrational wavefunctions take the form ψν,l(ρ, φ),

where ν = 1, 2, . . . is the principal vibrational quantum number and l = −ν + 1,−ν +

2, . . . , ν − 1 is the vibrational angular momentum quantum number, such that the

vibrational energies of modes with frequency ω are Eν = ν~ω [47]. Using the formalism

of the linear Jahn-Teller effect in the polar vibrational basis [47], we obtained the second-

order shifts of the vibrational energies as per Section 3.4. Performing the thermal average
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Figure 6. (a) Implications of phonon processes for ground state coherences. The

transitions arising from electron-phonon interactions described by our model are spin

conserving. Any coherences created between two ground states decay with the orbital

relaxation rates. (b) The γg+ can be suppressed at low temperatures (T � ∆ = λgSO).

(c) Large strain fields result in an increased splitting, also resulting in reduced phonon

occupation and suppressed γg+. For (b) and (c), the two lowest energy states constitute

a subspace with reduced thermal relaxation and extended coherence.

of the shifts in the orbital energies over all (acoustic) vibrational levels, the corrected

expression for the temperature shift of the optical line position is

1

2
(δE+ + δE−) = −2~χρ

∫ Ω

0

2e~ω/kBT
(
e2~ω/kBT + 3

)
(e~ω/kBT − 1) (e~ω/kBT + 1)

2ω
2dω ∝ T 3 , (13)

which correctly predicts the T 3 dependence of the optical line position. Note that this

corrected approach is consistent with the previous subsection and also predicts a T 2

dependence of the fine structure splittings. Hence, we can conclude that the electron-

phonon processes of the linear Jahn-Teller interactions within the ground and excited

electronic levels are responsible for the observed temperature variations of the optical

line width, position and fine structure splittings.

4. Discussion

In Section 3, we have shown that a simple model of linear electron-phonon interactions

can be used to successfully explain population dynamics (γe,g+,−, Section 3.2), dephasing

processes (γe,gd , Section 3.3), relative (Section 3.4) and mean (Section 3.5) energy shifts

within the ground and excited states. We next discuss implications of our observations

for ground state coherences and approaches that could be used to enhance coherence

times.

4.1. Implications for ground state coherences

The SiV− ground states have spin and orbital degrees of freedom which can be used as

qubit states. Figure 6(a) shows the electronic states under a magnetic field applied along

the SiV− symmetry axis. The orbital relaxation rates γg,e+,− discussed in this manuscript

are spin conserving, consistent with the long spin T1 times that were recently measured
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[19]. Even though such orbital relaxations are spin conserving, a phonon-induced orbital

quantum jump leads to a change of the detuning between spin states. In this limit, any

coherences formed between the four states shown in Figure 6 are therefore limited by

the T1 of the orbital degree of freedom.

Recent experiments [20, 19] that probed ground state coherences using coherent

population trapping (CPT) have reported T ∗2 values that are in good agreement with

the orbital T1 reported in our work. We note that the model used in [20] considered

thermal relaxation mechanisms only between the two lowest energy ground states shown

in Figure 6. The authors concluded thermal relaxation rates between these two states

to be suppressed owing to small spin overlap at low magnetic fields, and the T ∗2 to be

limited by magnetic field noise from the SiV− environment. While the former agrees

with our model (no relaxation between |e−〉 |↓〉 ↔ |e+〉 |↑〉), all four ground states need

to be considered to relate orbital relaxation rates to coherences. Based on the close

experimental agreement between T ∗2 and orbital T1, we conclude that coherence times of

SiV− ground states are limited by phonon processes even at liquid helium temperatures.

4.2. Extending ground state coherences

We have shown that ground state coherences are limited by a single-phonon orbital

relaxation process with a rate determined by a combination of phonon density of states

and occupation (γg± ∼ ρ(∆)(2n(∆, T ) + 1∓ 1)) at the energy of the spin-orbit splitting

with ∆ = λg
so ∼ 50 GHz. Since the interaction with the phonon bath is a Markovian

process, dynamical decoupling sequences cannot be applied to extend coherences. To

extend T ∗2 , we will therefore focus on approaches that reduce the orbital relaxation rates

γg±.

The first two approaches focus on reducing phonon occupation to decrease γg+. The

occupation depends on the ratio, T/∆ , of the temperature and the energy splitting

between the coupled orbital states. Substantial improvements can be achieved by

minimizing this ratio in cooling the sample to lower temperatures (T � ∆ ∼ 2.4 K,

Figure 6(b)). Based on our fits in Section 2.2, the expected orbital relaxation timescale

is given by 1/γg+ = 101 (e2.4/T − 1) ns which correspond to 1 µs at 1 K and 1 ms at

0.26 K. A second approach is to increase ∆ by using emitters subject to high strain. At

the limit of ∆ � T , similar reductions in phonon occupation can be used to suppress

relaxation rates as shown in Figure 6(c). Based on Eq. (5), we find that 1/γg+ equals

1 ms (1 µs) for a strain shift of 1.6 THz (0.9 THz) at 4 K. We note that in both cases,

only the two lowest energy states constitute a subspace that does not couple to phonons.

The lowest two energy states are therefore expected to have long coherence times and

could be used as a long-lived spin qubit.

The linear interaction Hamiltonian of Section 3.1 and the resulting single-phonon

orbital relaxation process are analogous to the Jaynes-Cummings Hamiltonian and

Wigner-Weisskopf model of spontaneous emission used in quantum optics [48]. One

can therefore use ideas developed in the context of cavity QED to engineer relaxation
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rates γg±. In particular, the phonon density of states can be reduced to suppress

the orbital relaxation rates. This is analogous to inhibited spontaneous emission of

photons [49] which has been observed for microwave and optical photons in atomic

and solid-state systems [50, 51, 52]. Acoustic phonons in diamond offer an exciting

new platform to probe this effect in a new regime owing to the highly broadband and

reflective boundary conditions at the diamond-vacuum interface. To suppress orbital

relaxation rates due to phonons at ∆ ∼ 50 GHz, small nano diamonds (d < 120 nm)

can be used to realise a complete phononic band gap for ν < 50 GHz phonons owing

to the strong confinement [53]. An alternative approach would utilise recent advances

in diamond nanofabrication [54, 55] to create 1D-optomechanical structures engineered

to inhibit phonon and enhance optical transitions by modifying the density of states

[56, 57, 58, 59]. Using this approach both γg+ and γg− are inhibited, therefore all four

ground states can be used as long-lived qubits. We expect both approaches that modify

phonon occupation and density of states to result in substantial improvements for the

ground state coherences of SiV− centres.
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