
Letter
https://doi.org/10.1038/s41586-019-1304-2

Spin–orbit-driven band inversion in bilayer 
graphene by the van der Waals proximity effect
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Spin–orbit coupling (SOC) is the key to realizing time-reversal-
invariant topological phases of matter1,2. SOC was predicted 
by Kane and Mele3 to stabilize a quantum spin Hall insulator; 
however, the weak intrinsic SOC in monolayer graphene4–7 
has precluded experimental observation in this material. Here 
we exploit a layer-selective proximity effect—achieved via a 
van der Waals contact with a semiconducting transition-metal 
dichalcogenide8–21—to engineer Kane–Mele SOC in ultra 
clean bilayer graphene. Using high-resolution capacitance 
measurements to probe the bulk electronic compressibility, we 
find that SOC leads to the formation of a distinct, incompressible, 
gapped phase at charge neutrality. The experimental data agree 
quantitatively with a simple theoretical model in which the new 
phase results from SOC-driven band inversion. In contrast to 
Kane–Mele SOC in monolayer graphene, the inverted phase is 
not expected to be a time-reversal-invariant topological insulator, 
despite being separated from conventional band insulators by 
electric-field-tuned phase transitions where crystal symmetry 
mandates that the bulk gap must close22. Our electrical transport 
measurements reveal that the inverted phase has a conductivity 
of approximately e2/h (where e is the electron charge and  
h Planck’s constant), which is suppressed by exceptionally small 
in-plane magnetic fields. The high conductivity and anomalous 
magnetoresistance are consistent with theoretical models that 
predict helical edge states within the inverted phase that are 
protected from backscattering by an emergent spin symmetry that 
remains robust even for large Rashba SOC. Our results pave the 
way for proximity engineering of strong topological insulators as 
well as correlated quantum phases in the strong spin–orbit regime 
in graphene heterostructures.

Depending on microscopic symmetry, SOC in graphene can take 
several forms, leading in turn to different electronic states at charge 
neutrality. In the absence of SOC, the low-energy electronic structure 
of monolayer graphene is described by Dirac equations in two inequiv-
alent valleys centred at the two momenta K and K′ of the hexagonal 
Brillouin zone. SOC, along with other perturbations that break the 
equivalence of the two valleys or two carbon sublattices, can be written 
with the aid of three sets of Pauli matrices, σ̂i, τ̂i and ŝi, which operate 
on the space of the carbon sublattices within the graphene unit cell, the 
K and K′ valleys, and the physical electron spin, respectively. If the full 
symmetry of the graphene crystal is preserved, the only symmetry- 
allowed SOC term at low energies is the Kane–Mele (KM) term3, 

σ τ= λH sz z zKM 2
KM , where λKM is the Kane–Mele SOC strength. However, 

additional terms can arise when experimental substrates break lattice 
symmetries; these include the Rashba SOC, HR = λR(σxτzsy − σysx), 
and the so-called Ising SOC, HI = λIτzsz. In monolayer graphene, only 
the intrinsic λKM term leads to a topological phase3,12. Moreover, this 
topological phase requires3 λR < λKM, which is a physically unrealistic4–6 
scenario given the measured7 value λKM ≈ 40 μeV.

Proximity effects between two-dimensional crystals provide a tool 
for engineering electronic structures that do not occur naturally within 
a single material. First-principles calculations indicate8,9 that hetero-
structures of graphene and transition-metal dichalcogenide (TMD) 
semiconductors such as tungsten diselenide (WSe2) may endow 
graphene electrons with a SOC strength of several millielectronvolts—
two orders of magnitude larger than the intrinsic Kane–Mele SOC7 
and sufficient, in principle, to enable observation of new topological 
phases23. Numerous experimental efforts have reported signatures of 
enhanced SOC in graphene–TMD heterostructures. However, most 
rely on measurements of either spin relaxation17–21 or weak antilocali-
zation10–16, both of which are sensitive to disorder and interface quality; 
this sensitivity affects scattering rates and as a consequence inferred 
SOC strength. One study11 of quantum oscillations found evidence 
for Rashba SOC within graphene band electrons of bilayer graphene 
(BLG), but neither Ising SOC nor a λKM-driven topological phase3 have 
been reported.

Here we explore the effects of proximity-induced SOC in van der 
Waals heterostructures built around BLG–tungsten diselenide 
(WSe2) interfaces (see Methods). In contrast to monolayer graphene, 
the electronic spectrum of BLG features a quadratic band touching 
at charge neutrality. An applied perpendicular electric displace-
ment field, D, drives the system to a layer-polarized band insulator 
in which wavefunctions are strongly polarized on the low-energy 
layer, making BLG an ideal tool for probing short-range van der 
Waals proximity effects. To access subtle features within the elec-
tronic structure, we use hexagonal boron nitride (hBN) gate dielec-
trics24 and single-crystal graphite top- and bottom-gate electrodes, 
which reduce charge inhomogeneity25 while simultaneously allow-
ing independent control over the charge carrier density, n, and D 
(see Fig. 1a). We measure the penetration field capacitance, CP = c2/
(2c + ∂n/∂μ), where c is the geometric capacitance and μ is the 
chemical potential. It is inversely related to the bulk electronic com-
pressibility, ∂n/∂μ, so that electronic gaps manifest as CP maxima. 
Figure 1b shows CP as a function of n and D measured in a BLG flake 
symmetrically encapsulated in WSe2. The most prominent features 
of the data are incompressible states at n ≈ 0 associated with layer- 
polarized band insulators, which deepen as |D| increases and are 
characteristic of BLG. However, WSe2 encapsulation also produces 
features associated with proximity-induced SOC. First, four weak 
CP minima appear at finite n (indicated by arrows in Fig. 1b), whose 
positions depend strongly on D. Second, an additional incompressible  
phase is observed at charge neutrality near D = 0, separated from 
the band insulators by points of high compressibility. We observe 
the incompressible state in two devices, S1 and S2, which are sym-
metrically encapsulated in WSe2, but it does not appear in either 
hBN-encapsulated device C1 or in devices A1 and A2 that are asym-
metrically encapsulated in hBN and WSe2 (Fig. 1 and Extended Data 
Fig. 3; see Methods for device names and details).
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Both experimental features can be captured by a continuum model 
of BLG (see Supplementary Information) with the sole addition of an 
Ising SOC term having equal magnitude—but opposite sign—on the 
two carbon layers (Fig. 1d–f). The opposite sign is consistent with 3D 
inversion symmetry. Figure 1e shows simulated CP from this model, in 
which the only free parameters are the strength of the SOC 
(λI = 2.6 meV) and the out-of-plane dielectric constant of the BLG 

= .⊥ε( 4 3)BLG . The latter is used to relate the experimentally measured 
D to the interlayer potential difference = − ⊥ε

u Dd

BLG

, which enters the 

theoretical model (here d = 0.33 nm is the BLG interlayer separation). 
At finite u, Ising SOC splits the normally spin-degenerate conduction 
and valence bands in BLG (Fig. 1d). The CP minima arise from the high 
compressibility associated with the edge of the higher (lower) conduc-
tion (valence) band. These band edges appear at finite density after the 
first bands have already begun filling (Fig. 1d, e).

The CP maximum observed near n= 0, D = 0 can be understood 
by noting that within a two-band model of BLG, layer and carbon 
sublattice are equivalent26. As a result, Ising SOC with opposite signs 
on opposite layers is equivalent to a single SOC term proportional 
to σz, precisely reproducing the Kane–Mele SOC3. The two-band 
Hamiltonian of WSe2-encapsulated BLG is thus

Ĥ Ĥ
λ

σ τ σ= + +s u
2 2

(1)z z z zBLG
I

where ĤBLG describes BLG in the absence of either SOC or electric 
fields, and σz indexes the two low-energy carbon atoms, or equivalently, 
the layer.

Within this model, the SOC inverts the bands for |u| < |λI|, opening 
a gap even at u = 0 (Fig. 1f). Owing to the 2π Berry phase of the ĤBLG, 
however, the resulting inverted phase is not predicted to be a strong 
topological insulator, and the observed incompressible phase near 
n = 0, D = 0 is not expected to have edge states protected by time- 
reversal symmetry. The inverted phase is nevertheless topologically 
distinct from the high-u band insulators within this model; they differ 
in the polarization of the insulators’ Wannier orbitals, which are 
pinned to one of three high-symmetry positions within the BLG unit 
cell22 (see also Supplementary Information). Theoretically, this dis-
tinction guarantees a gap closing between the inverted phase and band 
insulators, consistent experimentally with the compressible CP 
minima.

Proximity-induced SOC arises from overlaps between atomic 
orbitals, so is only expected to occur for the BLG layer in direct con-
tact with the WSe2. Figure 2a shows a schematic representation of an 
asymmetric heterostructure in which WSe2 is in contact with only the 
bottom layer. In contrast to the symmetric devices, CP minima appear 
in device A1 only for electrons for D > 0 and only for holes for D < 0 
(Fig. 2b). Note that in isolated BLG, all thermodynamic features should 
respect D ↔ −D symmetry, suggesting that the asymmetric CP minima 
are caused by coupling between the BLG and other elements in the 
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Fig. 1 | Inverted phase in bilayer graphene from proximity-induced 
SOC. a, Device schematic for a symmetrically WSe2-encapsulated device. 
The charge density n = ctvt + cbvb and perpendicular displacement field 
D = (ctvt − cbvb)/(2ϵ0) are controlled by the voltages applied to the top and 
bottom gate (vt(b)). b, Experimentally (Exp.) measured penetration field 
capacitance, CP, as a function of charge density n and displacement field 
D measured at B = 0 and T ≈ 50 mK in device S1. White arrows indicate 
compressibility maxima associated with band splitting due to proximity-
induced SOC. c, CP experimentally measured at n = 0 for a device 
symmetrically encapsulated with WSe2 (S1, red), a device asymmetrically 
encapsulated in hBN and WSe2 (A1, blue) and a control device fully 

encapsulated in hBN (C1, black). Only the symmetrically encapsulated 
device shows an incompressible peak at D = 0. The curves for S1 and A1 
have been multiplied by a factor for better comparison. d, Low-energy 
bands near the K point of the Brillouin zone for u = 10 meV, calculated for 
a model that includes an Ising SOC of equal magnitude (λI = 2.6 meV) but 
opposite signs on each layer. e, Simulated (Sim.) CP from the same model. 
The symbols denote points corresponding to different Fermi levels, as 
shown in d. f, Low-energy bands near the K point of the Brillouin zone for 
u = 0, calculated within the same model. The bands are spin degenerate, 
and a gap (SO gap, arrowed) is visible near zero energy. Light grey bands 
are calculated in the absence of SOC.
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heterostructure. Theoretical simulations (Fig. 2c and Extended Data 
Fig. 3) confirm that when SOC is induced only on the layer proximate 
to the WSe2, the spin splitting is restricted to the conduction (for D > 0) 
or valence (for D > 0) band, consistent with the experimental data 
(see Methods).

The nature of the induced SOC can be precisely validated using the 
unique properties of BLG in a quantizing perpendicular magnetic field 
(B⊥), where the zeroth Landau level (LL) is composed of eight degen-
erate states, spanning ν ∈ (−4, 4) as shown in Fig. 2d for device A1. 
Three features make the octet LL a precision probe of SOC. First, the 
small scale of the intrinsic splittings between these states allows even 
few-millielectronvolt-scale SOC8 to rearrange the LL filling sequence27. 
Second, the octet LL is entirely insensitive to Rashba SOC27, allowing 
a direct measurement of the Ising SOC27. Last, a broad set of D-field-
tuned phase transitions are observed throughout the zero-energy LL, 
corresponding to transitions between states with differing layer polar-
izations. The critical displacement field, D*, required to effect these 
transitions provides a direct comparison of the energy for LLs on oppo-
site layers (and thus opposite valleys), and can be extracted with high 
precision (Fig. 2e). Figure 2f shows the single-particle energy spectrum 
of the octet LL with asymmetric Ising SOC (see Methods). Although 
the Coulomb interaction changes the order in which these levels fill for 
−3 < ν < 3, it plays no role in determining which LL fills first (ν = −3) 
or last (ν = 3)28. We thus focus on the observed behaviour of ν=±

∗D 3, 
which can be simply related to ν=±

∗u 3 calculated from our theoretical 
model (see Supplementary Information).

The spin structure of the LLs is readily probed by varying the 
in-plane magnetic field B∥ at fixed B⊥, which varies the Zeeman energy 
but leaves orbital energy scales fixed. In hBN-encapsulated devices, 

ν=±
∗D 3 is observed to be independent of B∥ (Extended Data Fig. 5), con-

sistent with theoretical expectation that the transition occurs between 
ground states of identical spin. A strikingly different dependence is 
observed in device A1 (Fig. 2g); now ν=±

∗D 3 is a strong function of B∥, 
indicating that the transition is between ground states with different 
spin. As shown in the figure, the observed behaviour is quantitatively 
consistent with our model of Ising SOC on the WSe2 proximal layer, 
under the stipulations that λI be larger in magnitude than the Zeeman 
energy (EZ) due to the applied magnetic field (λI > EZ) and that the 
sign of λI be chosen to cancel, rather then add, to the B⊥-proportional 
part of the Zeeman splitting in the affected valley. Under these condi-
tions, the level structure near ν = ±3 is inverted, leading to the 
observed behaviour in B∥ (see Extended Data Fig. 5). Moreover, λI can 
now be directly extracted from the dependence27 of ν=±

∗D 3 on B⊥, in 
the absence of B∥: because the effective Zeeman splitting arising from 
the SOC is oriented out of plane, an out-of-plane extrinsic Zeeman 
splitting will precisely cancel it when 2EZ = 2gμBB⊥ = λI, where g is the 
Landé g-factor and μB is the Bohr magneton. Figure 2h shows ν±

∗D 3 for 
B∥ = 0. The two curves cross at B⊥≈7.4 T, from which it follows that 
λI = 1.7 meV (see Extended Data Fig. 9 for a similar analysis of device 
A2, resulting in λI = 2.0 meV). This value is in reasonable agreement 
with ab initio calculations23 predicting λI = 1.19 meV for similar device 
geometries. The ν=±

∗D 3 transitions are symmetric with respect to the 
sign of B⊥ because, in the absence of B⊥, the Hamiltonian is time- 
reversal invariant. Notably, the higher B⊥ phenomenology of our sam-
ples suggests that WSe2 is comparable to24 hBN as a substrate for 
high-quality graphene heterostructures, with Coulomb driven states 
with fractional Hall conductivity observed in compressibility (see 
Extended Data Figs. 6, 7).

In summary, to account for the bulk thermodynamic measurements 
of TMD-encapsulated BLG it is necessary to include Ising SOC on the 
layers proximate to the TMD, with equal and opposite values in the 
case of symmetric encapsulation. However, our bulk measurements 
do not quantitatively constrain the Rashba SOC, which has a negligible 
effect on both the LL structure27 and the zero magnetic field compress-
ibility22, and prior experimental estimates11,13,14,20,29 for λR range 
between 0 and 15 meV. Despite its small influence on the bulk, Rashba 
SOC may play a critical role in the edge state spectrum of our BLG 
Hamiltonian, equation (1). For λR = 0, sz is conserved, and the edge 
is predicted22,23 to host two pairs of counter-propagating, spin filtered 
modes with a quantized conductance (and spin Hall effect) of 4e

h

2
. 

When λR ≠ 0, however, sz symmetry is weakly broken and backscat-
tering is expected.
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Fig. 2 | Layer-selective spin–orbit proximity effect. a, Schematic of an 
asymmetrically encapsulated device. b, Penetration field capacitance, CP, 
as a function of n and D in device A1, experimentally (‘Exp.’) measured at 
B = 0 and T ≈ 50 mK. The white arrows indicate compressibility maxima 
associated with band splitting, which we attribute to proximity-induced 
SOC. c, Low-energy bands near the K point of the Brillouin zone for 
u = −10 meV (top) and u = 10 meV (bottom), calculated for a model that 
includes an Ising SOC of λI = 1.7 meV on the bottom layer. d, CP as a 
function of ν = πℓ n2 B

2  (where ℓB is the Landau magnetic length) and D for 
device A1 at B⊥ = 5 T. e, CP traces, normalized by the reference 
capacitance (Cref) on the low temperature amplifier (see Methods), taken 
at the locations of the white dashed lines in d for ν = ±3. The minima in 
CP correspond to phase transitions that occur at ν=±

∗D 3. f, Energy spectrum 
of the octet LL calculated within a continuum model with λI = 5 meV on 
the bottom layer. The energy levels are plotted as a function of u for 
B⊥ = 5 T. Solid/dashed lines denote spin projected parallel/antiparallel to 
the applied B⊥. The indicated ν=±

∗u 3 correspond to the layer transitions for 
filling or emptying a single level from the octet. Note that for the chosen 
sign of λI, the net spin splitting on the proximity-affected layer is reversed. 
The kets label states of the zeroth-LL octet involved in the ν = ±3 phase 
transitions with specific valley (+,−), orbital (0,1) and spin (↑,↓) quantum 
numbers. g, Measured ν=±

∗D 3—proportional to ν=±
∗u 3—as a function of the 

total magnetic field (BT) for fixed B⊥ = 4 T in device A1. The dashed lines 
are fits to our model (see Supplementary Information) with λI = 1.7 meV 
on the bottom layer. h, Measured ν=±

∗D 3 as a function of B⊥ with B∥ = 0 in 
device A1. Dashed lines are fits to the same model as in g.
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The inverted phase is readily evident in resistance measurements of 
a symmetric device (S2, see Fig. 3A, a and Extended Data Fig. 9b), but 
is not a strong insulator, showing a finite four-terminal conductivity  
σxx ≳ e2/h at low temperatures. This is consistent with edge states with a 
finite transmission coefficient, as might be expected for a finite-length 
helical edge in which backscattering is suppressed but not completely 
forbidden. However, it is also consistent with bulk conduction through 
a mesoscopically disordered sample. We discriminate between these 
two scenarios using the response of σxx to a small in-plane magnetic  
field, B∥, which breaks sz conservation. B∥ is expected to localize spin- 
filtered edge states rapidly while having a minimal effect on the bulk 
energy spectrum when EZ < λI (that is, B∥ < 10−20 T for λI ≈ 1–2 meV). 
Indeed, the inverted phase shows strong in-plane magnetore-
sistance at exceptionally small values of B∥, as shown in Fig. 3A, a–c:  
this response is completely absent in the band insulator phases. This is 
in contrast with CP measurements of the bulk, which show no detect-
able dependence on B∥ at low fields and a high-field response that is 
well accounted for in our theoretical model (Fig. 3B).

Numerical simulations of the band structure for a finite-width BLG 
ribbon (see Supplementary Information) are shown in Fig. 3C. In addi-
tion to the bulk gap, consistent with the continuum model, energy spec-
tra additionally feature states localized on the edge of the ribbon that 
approach E = 0 at the K, K′ and M points in the Brillouin zone. Whereas 
the M point (Fig. 3C, top inset) edge states are gapped even in the 
absence of Rashba SOC, the states near the K and K′ points (Fig. 3C, 
bottom inset) are indeed gapless and helical. Simulations22 show that 
the helical edge states are remarkably robust to Rashba SOC: the edge 
gap is strongly suppressed by interlayer hopping terms in the BLG band 
structure, so that the anticipated gap is λ γΔ ∝ / ≈ .0 25meVedge R

2
1  , where  

γ1 is the interlayer hopping energy, even for λR = 10 meV, near the 
largest values reported in the literature11. In contrast, the helical edge 
states are sensitive to finite B∥ (Fig. 3C, right panels of top and bottom 
insets), developing an energy gap directly proportional to the Zeeman 
energy, Δedge ≈ gμBB∥ ≈ 0.1 meV × B∥ (where B∥ is in units of tesla).

These considerations are qualitatively consistent with the observed 
in-plane magnetoresistance anomaly. However, we note that the fine 
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terminal geometry at n = 0. a, σxx as a function of D for different values 
of B∥. The inverted phase (IP) is visible as a conductance suppression 
between |D| < 20 meV nm−1, separated by conductance maxima from the 
band insulators (BIs) at large |D|. b, σxx as a function of B∥ for different 
values of D (in mV nm−1: red, 0; yellow, 10; blue, 30). Strong in-plane 
magnetoconductance is observed only in the inverted phase, and not in 
the band insulators. c, Subtracted Δσxx = σxx(B∥) − σxx(B∥ = 300 mT), 
highlighting that the anomalous in-plane magnetoconductance is 
restricted to the inverted phase. B, CP as a function of D and B∥ with 
B⊥ = 0 T. Experimental (Exp.) data for device S1 is plotted on the left and 

simulated (Sim.) CP from the continuum model is plotted on the right.  
C, Band structure calculated for a 1,000-lattice-site-wide BLG ribbon with 
Ising SOC of equal magnitude (λI = 5 meV) and opposite sign on the 
opposite layers. Within the bulk gap, a set of spin-polarized energy bands 
emerge with wavefunctions tightly localized on the sample boundary. 
Top inset, detailed view of the edge states that approach E = 0 near the 
M point, corresponding to the dashed box on the left of the main panel, 
of the Brillouin zone for EZ = gμBB∥ = 0 (left) and EZ = 0.5 meV (right). 
These states are not gapless even for EZ = λR = 0. Bottom inset, the same 
calculations for edge states near the K point, corresponding to the dashed 
box at the centre of the main panel. While gapless for EZ = λR = 0,  
in-plane field produces a gap proportional to EZ.
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structure of the edge states is highly sensitive to choice of theoretical 
parameters, and ignores electron–electron interactions, which may play 
an important role. Our experimental magnetoresistance data saturate 
at a rather low resistance value, well below h/e2, possibly indicating 
residual bulk conductance. It bears noting that the weak edge transport 
is understood to be a consequence of the accidental approximate sz- 
conservation in this system. However, recent theoretical work22 argues 
that the same fabrication technique implemented with ABC trilayer 
graphene—where the induced SOC would gap a cubic band having a  
3π Berry phase—results in a strong topological insulator with time- 
reversal symmetry protected edge states. Notably, the multi-layer 
graphene/WSe2 platform generically allows for gate-tunable transitions 
between topological and trivial insulating states, which is a long-standing  
milestone in the quest for reconfigurable topological circuits.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
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Methods
Device fabrication and measurement. Five BLG van der Waals heterostructure 
devices (labelled C1, A1, S1, A2/S2, A3) were fabricated and studied in this work, 
as shown in Extended Data Fig. 1. All devices were fabricated using a stacking 
and transfer method based on van der Waals adhesion30. Contact to the BLG was 
achieved using approximately 10-nm-thick graphite flakes. All devices made use 
of single-crystal hBN gate dielectrics24 and graphite gates25, which in combination 
are known to minimize extrinsic charge disorder. Devices A1, S1 and A2/S2 were 
fabricated using WSe2 crystals grown by a flux method31, while device A3 was 
fabricated using WSe2 from a commercial source (2Dsemiconductors.com). A 
mixture of CHF3 and O2 was used to dry etch the stacks to define the device area 
and create connections to the BLG and top and bottom gates. Electrical contact 
was made to the edges of the exposed graphite flakes using a three-layer metal film 
of Cr/Pd/Au (3 nm/15 nm/80 nm).

Penetration field capacitance measurements were performed on all devices 
and additional connections were patterned in device A2/S2 in order to perform 
electrical transport. With the exception of device A2/S2, all devices had charac-
teristics corresponding to uniform encapsulation on each facet by either hBN or 
WSe2, depending on the device configuration. Device A2/S2 showed two sets of 
LL phase transitions in the zero-energy LL, consistent with the device having one 
asymmetric portion (A2) and one symmetric portion (S2). Extended data from 
this device is presented in Extended Data Fig. 9.

Small changes in device capacitance are measured using a low-temperature 
capacitance bridge32, which effectively disconnects the device capacitance from 
the large capacitance of the cryostat cabling, see Extended Data Fig. 2. CP is a 
measure of the capacitance between the top and bottom gates, and its magnitude 
is high when the BLG is incompressible (gapped) and low when it is compressible 
(conducting). CP is measured by applying a fixed a.c. excitation (17–33 kHz) to 
the top gate (δVtop), and the phase and amplitude of a second a.c. excitation with 
the same frequency is adjusted and applied to a standard reference capacitor (Cref) 
on the low-temperature amplifier in order to balance the capacitance bridge. A 
commercial high-electron-mobility transistor (FHX35X) transforms the small 
sample impedance to a 1 kΩ output impedance roughly translating to a (power) 
gain of about 1,000. Vtop (top-gate voltage) and Vsamp (sample voltage) are swept 
at a fixed Vgate (gate voltage) in order to adjust charge density n = ctvt + cbvb and 
displacement field D = (ctvt − cbvb)/(2ϵ0).

All measurements were performed within the electronic bandgap of WSe2. 
Charge accumulation in the WSe2 layers is evident in capacitance measurements 
at high densities and manifests as apparent negative signals in CP as charge carriers 
are transferred from BLG to the opposite facet of the WSe2 substrates.
Data and simulations at B = 0 for varying λR. In order to determine what type 
of spin–orbit symmetry breaking terms are present in the symmetric device, we 
analyse the band structure and simulated capacitance CP for a one-sided device 
in further detail. As discussed in the main text, the band structure and in turn the 
system for the symmetric device are almost completely insensitive to the value of 
the Rashba SOC under the assumption of equal and opposite Rashba coupling in 
the top and bottom layer. To circumvent this peculiar property we focus on the 
one-sided device, which does not exhibit similar insensitivity to Rashba SOC due 
to its asymmetric construction.

The measured capacitance for the one-sided device is shown in Extended Data 
Fig. 4a. In addition to the symmetric gapped regions due to the applied interlayer 
potential (as also seen in the control device, C1), we observe two clearly defined 
asymmetric features (indicated with white arrows in Extended Data Fig. 4a) present 
in the D > 0, n > 0 and D < 0, n < 0 regions. Each feature consists of line-like 
‘dips’ in capacitance (see the linecut taken at the dashed line in Extended Data 
Fig. 4a plotted in Extended Data Fig. 4e). By definition, minima in CP correspond 
to maxima of compressibility. A maximum of compressibility in turn suggests an 
extremum of the band structure (van Hove singularities). With this understand-
ing in mind we consider three separate device simulations. (1) A pure Ising SOC 
system: non-zero Ising coupling, zero Rashba coupling (Extended Data Fig. 4b). 
(2) A pure Rashba SOC system: zero Ising coupling, non-zero Rashba coupling 
(Extended Data Fig. 4c). (3) A mixed system: non-zero Ising coupling, non-zero 
Rashba coupling (Extended Data Fig. 4d).

Corresponding band structures for the pure Ising (Extended Data Fig. 4i–l) and 
pure Rashba (Extended Data Fig. 4m–p) devices are shown in the panels below 
the capacitance simulations. We clearly see that neither a Rashba nor an Ising 
term leads to formation of a local minimum of the band structure. The Ising SOC 
together with interlayer potential causes an energy splitting of either conduction 
or valence bands (Extended Data Fig. 4i), while the Rashba SOC causes primarily 
splittings in momenta (Extended Data Fig. 4m). Of these two effects, only the 
splitting in energy will lead to two van Hove singularities, as seen in the experi-
mental map in Extended Data Fig. 4a and the linecut in Extended Data Fig. 4e. The 
split band for electrons corresponds to the dips in experimental CP and simulated 
CP marked by the square and circle symbols in Extended Data Fig. 4a, b, e, f.  

The splitting is also evident in the calculated density of states (DOS) shown 
in Extended Data Fig. 4h with a linecut in Extended Data Fig. 4g. The two 
peaks in DOS for electrons correspond directly to the dips in CP. The splitting 
is further exemplified by the energy contour plots of the two systems (Extended 
Data Fig. 4j–l and Extended Data Fig. 4n–o), which show a clear difference 
between band structures for the pure Ising and pure Rashba devices. We note 
however that a mixed system (both a non-zero Ising term and a non-zero Rashba 
term) cannot be excluded on the basis of this analysis as the capacitance of the 
mixed system possesses all qualitative features of a pure Ising device, as shown 
in Extended Data Fig. 4d.
ν = ±3 phase transitions in C1 and comparison with A1. The energy spectrum 
in BLG subjected to a quantizing perpendicular field is described by highly 
degenerate Landau levels (LLs). Two-fold quasi-degeneracies of the inequivalent 
valleys (ξ = ±1), spin projections (s = ±1), and the lowest two orbital (N = 0, 1)  
LLs26 combine to form an octet LL spanning ν ∈ (−4, 4), where ν π= ℓ n2 B

2  
denotes the LL filling factor. The degeneracy between individual octet sublevels 
|ξNs〉 is lifted by small intrinsic level splittings that include the Zeeman effect 
(lifting the spin degeneracy), interlayer potential u (lifting the valley degeneracy 
through the near-perfect equivalence of valley and layer polarization in the low-
est LLs26) and band structure effects that distinguish the two orbitals. If disorder 
is sufficiently low, these splittings tend to fully polarize the electron system into 
one or more of the |ξNs〉, which manifests experimentally as incompressible 
phases at all integer ν. As shown in Fig. 2d, this signature is present in WSe2 
supported samples, which show signs of full lifting of the octet degeneracy for 
B⊥ ≳ 2 T.

In the control device, C1, we do not expect to observe a Zeeman dependence 
of ν=±

∗D 3 as the transitions occur between states with the same spin orientation. 
Extended Data Fig. 5a shows the LL spectrum at B = 5  T for BLG without SOC. 
The level transitions at ν=−

∗u 3 are between |−0↑〉 and |+0↑〉. The applied magnetic 
field simply moves these two states down in energy, shifting the energy at which 
the transition occurs but keeping it pinned to u = 0 meV. This can be readily seen 
for C1 in the extracted D* from measurements of CP, see Extended Data Fig. 5b. 
D* is constant across the measurable field range. Note that offsets from u* = 0 are 
possible due to differing on-site energies within the BLG unit cell, which can arise 
from coupling to the hBN substrate, but that these offsets do not influence the spin 
degree of freedom. This is in contrast with the asymmetric device with a layer- 
specific SOC. Extended Data Fig. 5c shows the calculated LL spectrum for BLG 
now with an Ising SOC of λI = 5 meV. The level transitions for both ν = −3 and 
ν = +3 have been shifted away from u = 0 meV as a result of the rearrangement 
of the states on the bottom layer. Not only has the transition shifted from zero but 
the transitions now occur between states with opposite spin orientation. 
Application of a magnetic field acts to shift the levels in opposite directions, thereby 
changing the u* at which the transition occurs. This is again readily observed in 
the data for an asymmetric device, A1, shown in Extended Data Fig. 5d. ν=±

∗D 3 
moves to lower D at larger magnetic fields. An illustration of the canting of the spin 
in the spin–orbit coupled layer in an asymmetric device is shown in Extended Data 
Fig. 8e. As the in-plane field is increased, the spin in the proximitized layer cants 
towards the total magnetic field vector.
Measurements at higher magnetic fields. At higher magnetic fields, we observe 
fractional quantum Hall and Chern insulator states that are a testament to the 
quality of the heterostructures even with the incorporation of WSe2. Extended 
Data Fig. 6 shows CP measurements of the zero-energy LL for devices C1 (Extended 
Data Fig. 6a), A1 (Extended Data Fig. 6b) and S1 (Extended Data Fig. 6c) taken 
at 18 T. In the control device, incompressible states are observed at integer and 
fractional fillings consistent with our previous findings25. Remarkably, the same is 
true for A1 and S1 where the same filling sequences are observed. The red dashed 
line in Extended Data Fig. 6c shows the location of the high-resolution CP linecut 
shown in Extended Data Fig. 7a where fractional states are clearly observed. In 
device A3, fabricated with commercially obtained WSe2, we observe fractional 
Chern insulator states at even higher fields33. Extended Data Fig. 7b shows CP as 
a function of nominal charge density n0/c, where c is the geometric capacitance, 
and B⊥. Extended Data Fig. 7c shows a schematic of the insulating states observed 
in Extended Data Fig. 7b. Fractional Chern insulating states at 1/3, 2/5, 3/5 and 
2/3 filling are observed within the Chern band defined between (t, s) = (1, 1) and 
(2, 0) (black lines), where t and s are classifiers for the insulating states, see ref. 33 
for details.
Asymmetries in ν ≠ ±3 LL crossings. In addition to the crossing observed 
between LL coincidences for ν = ±3 for device A1, we also observe similar 
crossings at the same critical magnetic field, defined by the strength of λI, for 
ν = ±1 (Extended Data Fig. 8b) and ν = ±2 (Extended Data Fig. 8c). While the 
dependence of these crossings on magnetic field is similar to the ν = ±3 case, 
interactions become important for these level crossings and their full evolution 
is outside the scope of our single-particle theoretical model. The excited-state 
LLs (N = ±2; Extended Data Fig. 8d–f) and (N = ±3; Extended Data Fig. 8g–i) 
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additionally show strong asymmetries away from zero displacement field and 
nonlinear dependence on magnetic field presumably due to the proximity 
induced SOC.
Data from device A2/S2. Device A2/S2 (Fig. 3A and Extended Data Fig. 9) was 
fabricated with the intention of producing a symmetric device. However, capaci-
tance measurements and post facto optical microscopy show a misalignment in 
one region (indicated in Extended Data Fig. 9a, resulting in a small area of the 
device in which only one facet of the BLG is in contact with WSe2. Capacitance 
measurements, which are sensitive to areal averages of DOS, indeed detect twice 
the normal number of phase transitions (Extended Data Fig. 9d), which show 
features characteristic, respectively, of both symmetric and asymmetric devices S1 
and A1. In particular, one set of phase transitions shows the characteristic crossing 
of the ν±

∗D 3 transitions in finite field, resulting in a measured λI = 2.0 meV 
(Extended Data Fig. 9e). Transport measurements are performed on the side of 
the device that is completely encapsulated: these show clearly the inverted phase 

at zero field (Extended Data Fig. 9b) and the high in-plane field response (Extended 
Data Fig. 9c), similar to that found in device S1 with magnetocapacitance meas-
urements.

Data availability
The datasets generated during and/or analysed during the current study are avail-
able from the corresponding author on reasonable request.
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Extended Data Fig. 1 | Optical images and corresponding models for all 
the devices studied. For each device, the optical image is shown at the  
top and the corresponding model shown under. a, Control device C1.  
b, Asymmetric device A1. c, Symmetric device S1. d, Another symmetric 
device with a single-sided region. Details about this device are presented 

in Extended Data Fig. 9. e, Another asymmetric device, A3. This device 
showed additional features in the magnetocapacitance measurements that 
are associated with a moiré superlattice potential due to alignment of the 
BLG with the top hBN, see Extended Data Fig. 7.
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Extended Data Fig. 2 | Electrical schematic showing the details of the 
penetration field capacitance measurements. The components enclosed 
in the red dashed box are inside the cryostat, held at base temperature. 

Voltages are applied to Vtop and Vsamp (at a fixed Vgate) in order to adjust 
charge density n = ctvt + cbvb and displacement field D = (ctvt − cbvb)/
(2ϵ0). See Methods for details.
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Extended Data Fig. 3 | Comparison between experimental and 
simulated penetration field capacitance for the three device 
configurations studied. a, Penetration field capacitance, CP, as a function 
of charge density n and displacement field D measured at B = 0 and 
T ≈ 50 mK in the control device, C1. b, Schematic of device C1, a BLG 
flake encapsulated with hBN. c, Simulated CP as a function of interlayer 
bias, u, and charge density, n, from a low-energy continuum model for 
device C1. d, Low-energy bands for C1 near the K point of the Brillouin 
zone with ky = 0. Line colour represents the expectation value of the 
out-of-plane projection of the electron spin, 〈Sz〉. Panels correspond to 
u = −10 meV (top), u = 0 meV (middle) and u = 10 meV (bottom).  
e, CP for device A1. Arrows indicate weak features in CP. f, Schematic of 
device A1, in which the BLG is asymmetrically encapsulated between 
WSe2 and hBN crystals. g, Simulated CP for the asymmetric geometry 
with λI = 1.7 meV Ising SOC on the bottom layer. Arrows denote band-
edge singularity-associated features arising from spin-split valence 

(conduction) bands for electron (hole) doping, visible in h, the low-energy 
band structure. h, Low-energy bands for A1 near the K point of the 
Brillouin zone with ky = 0. Line colour represents the expectation value of 
the out-of-plane projection of the electron spin, 〈Sz〉. Panels correspond 
to u = −10 meV (top), u = 0 meV (middle), and u = 10 meV (bottom). 
i, CP measured for device S1. Note the incompressible phase centred at 
D = 0, n = 0, absent in either control or symmetric devices. j, Schematic 
of device S1, in which the BLG is symmetrically encapsulated between 
two few-layer WSe2 crystals. k, Simulated CP for the symmetric geometry, 
with an Ising SOC of equal magnitude (λI = 2.6 meV) but opposite signs 
on opposite layers. l, Low-energy bands for S1 in the symmetric geometry 
near the K point of the Brillouin zone with ky = 0. Line colour represents 
the expectation value of the out-of-plane projection of the electron spin, 
〈Sz〉. Panels correspond to u = −10 meV (top), u = 0 meV (middle), and 
u = 10 meV (bottom).
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Extended Data Fig. 4 | Comparison between experimental data and 
numerical simulations including λI and λR. a, Measured CP of device A1 
as a function of n and D. b–d, Simulated CP from a low-energy continuum 
model with SOC as follows: b, a one-sided Ising SOC of λI = 1.7 meV;  
c, a one-sided Rashba SOC of λR = 15 meV; and d, a one-sided Ising SOC 
of λI = 1.7 meV and a Rashba SOC of λR = 15 meV. e, Linecut taken at 
the location of the dashed white line (D = 0.1 V nm−1) in a. The symbols 
mark dips in CP indicated with the same symbols in a. f, Linecut of the 
simulated data in b taken at u = −11.8 meV, equivalent to a displacement 
field of 0.1 V nm−1 for device A1. The symbols mark dips in CP indicated 
with the same symbols in b. g, Linecut of the calculated density of 
states (DOS) in h for device A1 taken at u = −11.8 meV, equivalent to 

a displacement field of 0.1 V nm−1 for device A1. The symbols mark 
peaks in DOS which correspond to dips in CP indicated with the same 
symbols in a, b, e, f and g. h, Calculated DOS for device A1. i, Low-
energy bands (specifically bands 3–6) near the K point of the Brillouin 
zone with ky = 0, u = −10 meV and λI = 1.7 meV. A clear band splitting 
is observed in the conduction band associated with the addition of an 
Ising SOC. j–l, Fermi contours at E = −10 meV and u = −10 meV (j), 
E = 5 meV and u = −10 meV (k), and E = 6 meV and u = −10 meV (l). 
m, Low-energy bands near the K point of the Brillouin zone with ky = 0, 
u = −10 meV and λR = 15 meV. n–p, Fermi contours at E = −10 meV 
and u = −10 meV (n), E = 5 meV and u = −10 meV (o) and E = 6 meV 
and u = −10 meV (p).
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Extended Data Fig. 5 | Comparison between the ν = ±3 phase 
transitions in the control device C1 and the asymmetric device A1.  
a, Energy level diagram of the zero-energy LL in the absence of SOC. The 
ν = ±3 transitions are occurring between ground states with identical spin 
polarization. Note that offsets from u* = 0 are possible due to differing 
on-site energies within the BLG unit cell, which can arise from coupling to 
the hBN substrate, but that these offsets do not influence the spin degree  
of freedom. The solid and dashed lines differentiate spin orientation.  
b, Measured ν=±

∗D 3 as a function of the total magnetic field (BT) for fixed 
B⊥ = 4 T in control device C1. No Zeeman dependence is observed, 
consistent with expectations from an SOC-free model. The red dashed line 
is the average value of ν=±

∗D 3. c, Energy level diagram of the zero-energy 
LL with a layer-selective Ising SOC of λI = 5 meV, with sign chosen so that 
the effect of the SOC opposes the external field (reproduced from Fig. 2f of 
the main text). Note that the ν = ±3 transitions now occur between 
ground states with opposite spin polarization. d, Measured ν=±

∗D 3 as a 

function of BT for fixed B⊥ = 4 T in device A1, reproduced from the main 
text. The red dashed line is a two-parameter fit with λI = 1.7 meV and 
ϵBLG = 2.8, with the latter needed for the conversion between 
experimentally measured D and theoretically calculated u. e, Schematic of 
the effect of BT in an asymmetric device. The red curve plots the dot 
product of the spin orientation on the top layer and the magnetic field, and 
the blue curve plots the product of the spin orientation on the bottom layer 
and the magnetic field. Whereas the LL in the unaffected layer always 
aligns its spin polarization with the external magnetic field (see the red 
arrows in the dashed boxes for total external magnetic fields of 5, 10 and 
20 T, respectively), the spin polarization of LLs in the SOC-proximitized 
bottom layer result from a competition between SOC-induced Zeeman 
field (out of plane) and the changing direction of the physical Zeeman field 
(see the blue arrows in the dashed boxes). The affected spin cants only 
slightly for λ�EZ I, but eventually the Zeeman energy overwhelms the 
SOC and the two spins align as EZ/λI → ∞.



Letter RESEARCH

Extended Data Fig. 6 | Measured penetration field capacitance for devices A1, C1 and S1 at 18 T. a–c, CP measured as a function of D and n at 
B = 18 T for devices C1 (a), A1 (b) and S1 (c). The red dashed line in c shows the location of the linecut plotted in Extended Data Fig. 7a.



LetterRESEARCH

Extended Data Fig. 7 | Fractional quantum Hall and Chern insulator 
states at high magnetic field. a, Fractional quantum Hall states (black 
labels) observed at 18 T in device S1. CP/Cref taken at D = 1.5 V nm−1 in 
Extended Data Fig. 6c (red dashed line), corresponding to a range of 
−4 < ν < −2. In the N = 0 orbital, fractional quantum Hall states up to 
sevenths are clearly observed. In the N = 1 orbital, an incompressible state 
is observed at half-filling. b, Fractional Chern insulator states in 
asymmetric device A3 at high magnetic fields with the BLG and hBN 
perfectly aligned. CP (normalized by Cref) is shown as a function of 
nominal electron density n0/c (where c is the geometric capacitance) and 
applied perpendicular magnetic field B, at a fixed polarizing electric field 
p0 = = −ε( )D 6V

p

c c
20 0 . c, Schematic of the observed insulating states in 

units normalized to the moiré unit cell area (Amoiré): these are the 
number of flux quanta per moiré unit cell nΦ (= B/AmoiréΦ0) and the 
number of electrons per moiré unit cell ne = n/Amoiré, where Φ0 = h/e  
is a flux quantum and n is the electron density. The insulating states  
are characterized by their inverse slope and intercept in these units, t  
and s, respectively. We observe a topological Chern band with δt = C = 1 
and δs = 1, which originates at nΦ = 1 between insulating states  
(t, s) = (1, 1) and (2, 0) (black lines). We observe fractional Chern 
insulating states at 1/3, 2/5, 3/5, 2/3 filling of the band (blue lines) with 
quantum numbers t, s = (4/3, 2/3), (7/5, 3/5), (8/5, 2/5), (5/3, 1/3), 
labelled respectively.
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Extended Data Fig. 8 | Phase transitions as a function of magnetic field 
for the rest of the zeroth LL and the N = 2, 3 excited states. Following the 
analysis for ν=±

∗D 3 in Fig. 2h, we plot the dips in CP at corresponding 
polarizations (p0/c ∝ D) as a function of perpendicular magnetic field (B) 

in device A1 for ν = 0 (a), ν = ±1 (b), ν = ±2 (c), ν = ±5 (d), ν = ±6 (e), 
ν = ±7 (f), ν = ±9 (g), ν = ±10 (h) and ν = ±11 (i). The labels (−, +) 
indicate the different phase transitions for each integer gap.
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Extended Data Fig. 9 | Summary of data from device A2/S2. a, Optical 
image of device A2/S2. b, Rxx as a function of D and n at B = 0 T for the 
S2 portion of the device. The inverted phase is evident at charge neutrality 
and zero displacement field. c, Rxx as a function of B∥ and D for the S2 
portion. d, CP as a function of n and D at B = 4 T for device A2/S2. Two 
sets of ν = ±3 transitions are evident, indicated by the white arrows.  

e, ν = ±3 transitions for device A2/S2. The crossing between ν = −3 and 
ν = +3 coming from the one-sided portion of the device (A2) is consistent 
with the crossing found in the asymmetric device A1. No crossing is 
evident in the symmetric portion which is consistent with transitions  
in S1.
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