nature .
photonics

ARTICLES

PUBLISHED ONLINE: 24 AUGUST 2015 | DOI: 10.1038/NPHOTON.2015.153

Boson sampling for molecular vibronic spectra
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Controllable quantum devices open novel directions to both quantum computation and quantum simulation. Recently, a
problem known as boson sampling has been shown to provide a pathway for solving a computationally intractable problem
without the need for a full quantum computer, instead using a linear optics quantum set-up. In this work, we propose a
modification of boson sampling for the purpose of quantum simulation. In particular, we show that, by means of squeezed
states of light coupled to a boson sampling optical network, one can generate molecular vibronic spectra, a problem for
which no efficient classical algorithm is currently known. We provide a general framework for carrying out these

simulations via unitary quantum optical
experimental realization.

uantum mechanics allows the storage and manipulation of

information in ways that are not possible according to clas-

sical physics. At a glance, it appears evident that the set of
operafions characterizing a quantum computer is strictly larger
than the operations possible in a classical hardware. This specu-
lation is at the basis of quantum speedups that have been achieved
for oracular and search problems!?. Particularly significant is the
exponential speedup achieved for the prime factorization of large
numbers®, a problem for which no efficient classical algorithm is
currently known. Another attractive area for quantum computers
is quantum simulation*”, in which it has been shown recently
that the dynamics of chemical reactions' as well as the molecular
electronic structure!! are attractive applications for quantum
devices. For all these instances, the realization of a quantum compu-
ter would challenge the extended Church-Turing thesis (ECT),
which claims that a Turing machine can efficiently simulate any
physically realizable system, and even disprove it if prime factoriz-
ation was finally demonstrated to be not efficiently solvable on
classical machines.

At the same time, the realization of a full-scale quantum computer
is a very demanding technological challenge, even if it is not forbid-
den by fundamental physics. This fact motivated the search for inter-
mediate quantum hardware that could efficiently solve specific
computational problems believed to be intractable with classical
machines, without being capable of universal quantum computation.
Recently, Aaronson and Arkhipov found that sampling the distri-
bution of photons at the output of a linear photonic network is
expected (modulo a few conjectures) to be computationally inefficient
for any classical computer, because it requires the evaluation of many
matrix permanents'?. On the contrary, this task is naturally simulated
by indistinguishable photons injected as the input of a photonic
network (see the pictorial description of boson sampling in
Fig. 1a). Although several groups have already realized small-scale
versions of boson sampling!*~!6, to challenge the ECT one also has
to demonstrate the scalability of the experimental architecture!”:!%,

Although boson sampling will probably play a major role in the
debate around the ECT, it also appears as a somewhat artificial
problem in which we ask a classical computer to predict the behav-
iour of a quantum machine (under certain working conditions)
and then compare its efficiency with the direct operation of the

transformations and supply specific molecular examples for future

machine itself. In this work, we present a connection between
boson sampling and the calculation of molecular vibronic
(vibrational and electronic) spectra related to molecular processes
such as absorption, emission, photoelectron and resonance
Raman spectroscopy (see Table 1)1°-2%, These molecular spectro-
scopies are fundamental probes for molecular properties; for
example, the corresponding vibronic transitions involve two elec-
tronic states and one can extract the molecular structural and
force-field changes from the spectra. In particular, the linear
absorption spectra of molecules determine important properties,
such as their performance as solar cells?® or as dyes, for either bio-
logical labels or industrial processes®. The prediction of the linear
absorption of molecules is computationally challenging, especially
when complicated vibrational features (see, for example, Dierksen
and Grimm?’ and Hayes et al.?®) make the spectra very rich.
Moreover, photoelectron spectroscopy is a useful tool to study
the ionized states of molecules. The ionizing process is important
in chemistry and biology; for example, the photodamage of de-
oxyribonucleic acid molecules is fatal to life. We show a photo-
electron spectrum of thymine? (the experimental spectrum is
also given later in Fig. 4) as an example of the current state of
the art.

We propose a new simulation scheme that provides a second,
chemically relevant reason to realize boson sampling machines. It
replaces the direct calculation of Franck-Condon (FC) factors,
including Duschinsky mode mixing®, that represent a computa-
tionally difficult problem for which various strategies have been
developed in the vibronic spectroscopy community (see, for
example, Ruhoff et al?, Jankowiak et al?®* and Santoro et al.>!)
with a simple sampling procedure from a quantum photonic
device. In particular, we show that the quantum simulation, and
hence the calculation of Franck-Condon profiles (FCPs) that lie at
the heart of linear spectroscopy, can be efficiently performed on a
boson sampling machine simply by modifying the input state.
This connection provides a scientific and industrially relevant
problem with a physical and chemical meaning that is well separated
from the simulation of linear quantum optical networks. A comp-
lementary approach for the quantum simulation of molecular
vibrations in quantum optics using a time-domain approach was
introduced recently (A. Laing, personal communication).
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Figure 1 | Pictorial description of boson sampling and molecular vibronic
spectroscopy. a, Boson sampling consists of sampling the output distribution
of photons obtained from quantum interference inside a linear quantum
optical network. b, Vibronic spectroscopy uses coherent light to excite
electronically an ensemble of identical molecules and measures the
re-emitted (or scattered) radiation to infer the vibrational spectrum of the
molecule. We show in this work how the fundamental physical process that
underlies b is formally equivalent to situation a, together with a step to
prepare a nonlinear step.

Results

Boson sampling and vibronic transitions. Boson sampling
considers the input of N photons into M optical modes. This
quantum space can be described through a Fock basis that counts
the number of photons distributed in each mode. We denote such
states by |n;, n,, ..., ny) =|n), where n; corresponds to the
number of photons in the jth mode and we have the constraint
>_;n;=N. These photons are sent through an optical network
whose action is characterized by the unitary operation U. Any
input state |¢,, ) is related to the corresponding output state |, )

through the relation:

|¢0ut> = U|¢m) (1)
Considering linear quantum optical set-ups poses a restriction on
the transformation U that is constrained to represent a
multimode rotation. We denote such a rotation as R, because its
action is characterized by the M x M unitary matrix U via the
expression:

)

we introduce the column vectors of
at=(@/, ..., a))" and transformed
boson-creation operators a’f =(a;’, ..., &);)", and adopt a
shorthand notation®! for the operator action on af, that is
Aa'B=(AaB, ..., Aa)B)".

Given this set-up, the problem is to compute both the transition
probability between input and output states in the Fock basis
expressed by the quantity:

For notational simplicity,
boson-creation operators

Py = [{m[Ry )/’ (3)
where |n) is the input state and |m) the desired state in output, and,
perhaps more importantly, which output states |m) will significantly
contribute to the total distribution. As the total number of photons
and the number of modes increase, the probability distribution of
output states becomes hard to predict and sample from with classical
computers, but it can be measured directly with linear optics devices.
In particular, each transition probability, P,,,, is proportional to the
permanent of a different submatrix of U (refs 12,32).

We observe two facts: first, that the calculation of matrix
permanents is a computationally hard problem for many classes
of matrices belonging to the complexity class #P (ref. 12) and,
second, that the space of N photons in M optical modes is iso-
morphic to the space of N molecular vibrational quanta
(phonons) in M vibrational modes. The latter connection suggests
that the dynamics of vibrational modes is computationally difficult,
at least in some instances. Moreover, as we will show, the compu-
tation of spectra requires sampling from a distribution of an

Table1 | A comparison of boson sampling and the computation of vibronic transitions.

Boson sampling

Vibronic transitions

Harmonic oscillators

g1(w) (@)
) q5(w)
Linear transform at=yaf
Unitary operators Rotation
Particle to simulate Photon
Particle in simulator Photon

Outcome of simulation |Permanent|?

g,(wy)

1 - 1 - 1
=20~ UH™Ha +oU+ UHMHa' +—=d
Displacement, squeezing and rotation
Phonon
Photon
FCP (spectrum)

The QHOs in the first row show the corresponding two-dimensional normal coordinates (g, and g; for input and output states, respectively) and their respective harmonic frequencies (w, and @,"). The two sets
of QHOs in boson sampling are rotated with respect to each other such that the linear relation with the rotation matrix U of the boson-creation operators are given in the second row. The two sets of QHOs in
vibronic transitions are displaced, distorted (frequency changes) and rotated with respect to each other. d is a displacement vector of the QHOs. The boson-creation operator (4) of the output state is now given
as a linear combination of the boson-annihilation (&) and -creation (&") operators of the input state with the dimensionless displacement vector 8. A matrix J characterizes the rotation and squeezing operations

during a vibronic transition. This scenario applies only when U is a real matrix.
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Figure 2 | Boson sampling apparatus for vibronic spectra. a, The boson
sampling apparatus modified according to a direct implementation of
equation (9). b, The boson sampling apparatus modified according to
equation (11). Here the difference with the usual set-ups for the typical
boson sampling problem is confined to the preparation process of the input
state. For simplification, D= Dﬂs/ﬁ. Green and red boxes after the first
unitary operations represent the prepared initial states, which are identified
as squeezed vacuum and squeezed coherent states, respectively. The wavy
yellow lines that enter the interferometer represent the preoperative initial
states, which are vacuum states in this figure. They could be non-vacuum
states for the proposed extension of the theory.

extremely large number of permanents, identical to the problem of
boson sampling. Thus, even in instances where the individual per-
manents may be easy to approximate, the overall sampling
problem may not be tractable'?. However, unlike boson sampling,
a simple rotation of the modes is not sufficient to reproduce vibronic
spectra (see the first row of Table 1) and additional effects need
to be taken into account. We now detail these important
additional effects.

An electronic transition of a molecule induces nuclear structural
and force changes at the new electronic state. This defines a new set
of vibrational modes that are displaced, distorted (hence showing a
frequency change) and rotated with respect to the vibrational modes
of the ground electronic state (see Table 1, first row and second
column). Within the harmonic approximation of the electronic
energy surfaces and the assumption of a coordinate-independent
electronic transition moment (the Condon approximation), the
vibronic transition profiles can be obtained by the overlap integral
of the two M-dimensional quantum harmonic oscillator (QHO)
eigenstates (FC integral), where M =3M, . — 6(5) for nonlinear
(linear) molecules with M, atoms.

To describe these effects and compute vibronic profiles,
Duschinsky®® proposed a linear relation between the initial (mass-
weighted) normal coordinates (q) and the final coordinates (q'),
which reads:

q=Uq+d (4)

where U is the Duschinsky rotation (real) matrix?** and d is the
displacement (real) vector responsible for the molecular structural
changes along the normal coordinates (see the first row of Table 1
for a comparison between the Duschinsky relation and the boson
sampling problem). Observe that all the matrices and vectors associ-
ated with the electronic excitation of a molecule are real matrices
and real vectors, a fact used to simplify all the expressions reported
below. The two sets of QHOs are related by the Duschinsky relation,
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which can be expressed in terms of a modification of the ladder
operators®! as given by:

1 1 L1
a' =50~ (]t)_l)ﬁ+5(]+ gHha' +75 ©)

7
with J and 8 defined as:

-12)

J=QUQ", 8= Qd (6)

Q/:diag(\/a;—g, w}\,),():diag(\/w_l, . Joy)

The notation ‘diag’ denotes a diagonal matrix, and {w,'} and {w,}
are the harmonic angular frequencies of the final and initial
states. The major differences of equation(5) from the boson
sampling problem (a’f = Ua') are the appearance of the annihil-
ation operators a and the displacement vector 8. The annihilation
operators appear in equation (5) to account for the distinct frequen-
cies of the QHOs. Doktorov et al.?’ analysed the linear transform-
ation in equation (5) with a set of unitary operators. The linear
transform in equation (5) can be written as &= U]  a'Up,,
where the Doktorov transformation U, is:

Ubek = b&/ﬁ SL’RUSQ (7)

With our conventions, any initial vibronic state |¢,,) is transformed
into |¢,..) = Upex| &y, )- The Doktorov transformation is composed,
in order of application, of (single mode) squeezing S, rotation Ry,
squeezing S_TQ, and coherent state displacement Dy, /3 operators. The
specific form of the unitary operators is given in Ma and Phodes™
and also in Methods. Unlike the usual boson sampling case, the
total number of phonons is not conserved in the scattering process.

The transition probability (|{m)| UDok [n)|?) is called the FC factor,
and through sampling many FC factors one obtains at each given
vibrational transition frequency (w,;,) the FCP. Explicitly, the FCP
at 0 K is obtained with the initial vacuum state |0) as:

oo N
FCP(w,,) = Y |(m| UDok|0>|28<wvib -3 w;mk) ®)
m k

the best-known classical algorithm to compute FCP scales combina-
torially in the size of the system. We provide a more thorough
discussion of the complexity aspects in Methods.

We summarize the comparison between the boson sampling and
the vibronic transition in Table 1 and proceed to show how to simu-
late the molecular vibronic spectra by sampling photons from a
modified boson sampling device.

Boson sampling for FC factors. If all the phonon frequencies are
identical and there is no displacement, the Duschinsky relation
(equation (5)) can be directly reduced to the original boson
sampling problem (equation (2)) when it applies to input Fock
states of the form discussed in the original boson sampling'?. For
these molecules, a specific initial Fock state would correspond to
the vibronic spectra of molecules in a well-defined initial
vibrational state. Therefore, the Duschinsky relation can be
considered as a generalized boson sampling problem (see Lund
et al3*) that involves not only rotation, but also displacement and
squeezing operations. In this section, we modify boson sampling
to simulate the FCP in the Duschinksy relation. We assume that
the initial state corresponds to the vibrational ground state
(mathematically, a vacuum state), which means that the FCP is
produced at 0 K.

Our proposal can be extended to vibronic profiles at a finite
temperature by preparing various initial states with a probability

617

© 2015 Macmillan Publishers Limited. All rights reserved


http://dx.doi.org/10.1038/nphoton.2015.153
http://www.nature.com/naturephotonics

ARTICLES

NATURE PHOTONICS Dbo!: 10.1038/NPHOTON.2015.153

that corresponds to their Boltzmann factor’*¥. A detailed finite-
temperature experimental proposal is outside the scope of this
paper. We can interpret some of the additional operators in the
Duschinsky relation as part of the state-preparation process of the
input state for boson sampling. To this end, we move the position
of the displacement operator in UDOk (equation (7)) from the left
end to the right end by rotating the corresponding displacement
parameter vector, that is:

Upoie = Sy RySaD; 15,5 ©9)

The FC optical apparatus can be set up according to Upy in
equation (9). As shown in Fig. 2a, the photons are prepared as
squeezed coherent states or squeezed vacuum states, which corre-
spond to the displaced modes and non-displaced modes, respect-
ively. Thus, the input state to the boson sampling optical network
is [y) =80D;15,510) = S 73/7'8). As depicted in Fig. 2a, the pre-
pared initial state |y) passes through the boson sampling photon
scatterer R;, and then the output photons undergo the second
squeezing operation SI] Finally, photocounters detect the output
Fock states. The resulting probability can be resolved in its transition
frequency (w,y, = Y p w,m,) to yield the FCPs from the boson
sampling statistics. Here, w) represents the phonon frequency and
not the input photon frequency. We do not assign different frequen-
cies to different modes for the corresponding phonon modes;
however, that the phonon-mode frequencies are different is taken
into account by parameters of the state-preparation process and of
the optical network.

In practice, the second squeezing operation is difficult to realize
in optical set-ups as one needs a nonlinear interaction in situations
that may involve only a limited number of photons. For this reason,
instead of performing such an operation directly, as described in
Fig. 2a, we propose to compress the two squeezing operations into
a single one. We can achieve this goal by means of the singular
value decomposition of the matrix J in equation (6),

J=C2C (10)
where C; and C; are real unitary matrices and X is a diagonal matrix
composed of square roots of the eigenvalues of J'J. As a result, the
Doktorov operator can be rewritten as:

Upo = RCLS};—RTCRD%Z_ s (11)
The computation of the Up,, operator and the transformation
require O(M?) operations which remain feasible even when M
exceeds several thousand.

At this point, the Doktorov operator is composed of two
rotations, one squeezing operator and one displacement operator.
The input state |¢) to the boson sampling optical network is
prepared by applying the displacement, rotation and squeezing
operators sequentially, that is:

|} = SLRE, Dy15/y310) (12)

PR |
=8l =G '9)
V2
As one can see from direct inspection, |¢) is a squeezed coherent
state. The only remaining task is to pass the prepared input state
through the boson sampling optical network, which is characterized
by the rotation matrix C; for R, . This simplified optical apparatus
is depicted in Fig. 2b. Now, the problem is identical to boson
sampling with squeezed coherent states as input**3*%’. Boson

sampling with inputs different from Fock states, for example with
coherent states or squeezed vacuum states, have been proposed
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Figure 3 | FCP (black sticks) of formic acid (1'A’ — 1?A’) for a symmetry
block a’. The red curve is taken from the experimental spectrum in
Leach et al.*°

and analysed in the context of the study of computational complex-
ity in Lund et al.**, Rahimi-Keshari et al.*® and Olson et al.’” The
algorithm for computing FCPs from a boson sampling set-up and
its scaling behaviour are described in Methods.

Examples. We present two examples of computation of FCPs for
molecules. In particular, we propose to simulate the photoelectron
spectra of formic acid (CH,0O,) and thymine (CsH¢N,O,). The
photoelectron spectroscopy involves the molecular electronic
transition from a neutral state to a cationic state. The spectral
profile can be obtained by computing the corresponding FC
factors®®. The molecular parameters for the calculations are
reproduced from the Supplementary Material of Jankowiak et al.®
The FCPs are calculated with the vibronic structure program
hotFCHT?3%, Parameters for the corresponding boson sampling
experimental set-up are given in the Supplementary Information.

Formic acid represents a small system for testing the quantum
simulation with relatively small optical set-ups. The calculated
FCPs for formic acid are presented in Fig. 3 as black sticks, with a
bin size A, =1cm™. The red curve in Fig. 3 is taken from the
experimental spectrum in Leach et al.** and includes the effects of
line broadening. A table for the probabilities with respect to the cor-
responding quantum numbers and the vibrational transition fre-
quencies is given in the Supplementary Information for a direct
verification with boson sampling experiments. Additionally, we
simulated the results of what would be expected in a boson sampling
simulation of formic acid, and present these in the Supplementary
Information. This simulation is done by stochastically sampling
the known probability distribution for the output modes and per-
forming the analysis according to equation (8) and the algorithm
in Methods. The results from this simulation indicate that relatively
few samples are needed from the device to resolve the overall shape
of the spectrum, which supports the experimental feasibility of
the approach.

The important FC factors (>0.01) in Fig. 3 require at most three
photons per mode (see the Supplementary Information). Current
photon counters are able to distinguish up to a few photon
numbers (< 3) per mode*!. The (single mode) squeezing parameters
for formic acid are given as In(X) (ref. 31), that is:

In(Z) = diag(0.10, 0.07, 0.02, —0.06, —0.08, —=0.11, —0.19)  (13)
The squeezing parameters are between —0.2 and 0.1. These par-
ameters are related to the frequency ratio between the initial and
final frequencies. The experimental implementation of boson
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Figure 4 | FCP (black sticks) of thymine (1'A’ — 12A”). The red curve,
whose FCP is shifted to be compared clearly, is taken from the experimental
spectrum in Choi et al.?®

sampling for vibronic spectra would rely on experimental squeez-
ing-operation techniques. At present, multiple experimental propo-
sals for arbitrary squeezing operations on coherent states have been
proposed. For example, phase-intensive optical amplification?,
ancillary squeezed vacuum® and a dynamic squeezing operation*
are all potentially promising.

We present here an FCP of thymine as a more experimentally chal-
lenging example for vibronic boson sampling. The calculated FCP of
thymine is given as black sticks in Fig. 4. The details can be found in
Jankowiak et al.?* and also in the Supplementary Information.

Discussion

Boson sampling may be one of the first experimentally accessible
systems that challenges the computational power of classical compu-
ters. However, to our knowledge there has not been any proposal on
its use for simulation purposes. In this work, we develop a connec-
tion between molecular vibronic spectra and boson sampling that
allows the calculation of FCPs with quantum optical networks.

First, such a connection suggests that computing the dynamics of
vibrational systems must be a computationally difficult task for
some systems. We show that a modification of the input state of a
boson sampling device enables the computation of complex mol-
ecular spectra in a way that includes effects beyond simple
vibrational dynamics. This allows one to generate the molecular
vibronic spectrum by shining light in boson sampling optical net-
works rather than on real molecules, and opens new possibilities
for studying molecules that are hard to isolate in a lab setting and
too big to simulate on a classical computer.

It is worth addressing a few points regarding the complexity of
the classical computation that we propose to substitute, especially
in relation to analogous results demonstrated for the original
boson sampling problem. On the one hand, the set-up that we con-
sider includes additional operations, namely squeezing and displa-
cement, with the consequence of enlarging the output
distributions that it can generate. On the other hand, the hardness
proof by Aaronson and Arkhipov!? relies on a few conditions that
concern the optical network. First, the matrix that describes such
networks should be randomly distributed according to the Haar
measure; second, the relation M = O(N?) is required for the original
boson sampling problem to avoid boson collisions in the output
modes. Although there is no reason to believe that the
Duschinsky rotation matrix is randomly distributed according to
the Haar measure, it has both positive and negative entries'>*5,
and the combinatorial scaling of all known classical methods for
sampling the output of such matrices (approximate and exact)
suggests they fall under the currently unknown necessary (as
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opposed to sufficient) conditions for hardness of sampling.
Moreover, in contrast to the original boson sampling, alternative
implementations with squeezed coherent states preserve hardness
as they present mean photon numbers different from unity>43¢%7,

To motivate experimental realizations, we present two small mol-
ecules with a Cg point-group symmetry. Exploiting the molecular
symmetry makes the classical computation of the FCP easier, but
molecules often have no symmetry, especially in the case of large
molecules. Testing small systems represents an important step that
precedes the application of boson sampling to the molecular vibro-
nic spectroscopy of large systems whose calculation with classical
computers is expected to be hard. Our work can be extended in
various directions, for example, the quantum simulation that we
propose can be generalized to vibronic profiles at finite tempera-
ture’>* by exploiting thermal coherent states*® or one can consider
the modification of boson sampling experiments to include non-
Condon*® and anharmonic effects*. Finally, we envision that exper-
imental molecular spectra may be used as a reference to provide
partial certification of large quantum devices beyond classical
simulation capabilities.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods

Algorithm and scaling. Although no formal proof of the complexity of computing
FCPs exists, we describe an observed computational effort for current algorithms
and typical (molecular) problem instances. As the molecular system size and
temperature increase, the evaluation of the FCP with classical computers becomes
practically intractable (see Jankowiak et al?* and Santoro et al.?%). The size and
temperature effects make the resulting spectrum very congested because of the
increase of the density of states. Already, the enumeration of the states that
contribute to each point of the frequency grid (w,y,) is an issue for evaluating the
FCP. That is, one needs to find all sets of m that satisfy w, = ZkN wmy at 0 K. To
address this issue requires an algorithm to count the vibrational states and determine
its limitation with respect to the system size (see, for example, Berger and
Klessinger®). The calculation of FC integrals ((m|Up,,|n) (see the Supplementary
Information for the detailed expression)) is equivalent to the evaluation of
multivariate Hermite polynomials at the origin®**74%, Indeed, Huh3? showed that it
can be evaluated by an algorithm developed for multivariate normal moments*.
Kan® exploited a collective variable to calculate the moments of the distribution,
and obtained an algorithm that requires

(1 + B (Zk (n + mk))D [T, (e + Dmy + 1)

terms, where [x] is a rounded integer of x. This number is much smaller than the
number of terms from a brute-force evaluation of Wick’s formula, which
corresponds to (3, (ny + my) — 1! (ref. 49), where a similar analysis was done for
the squeezed vacuum state input problem in boson sampling®. However, the
computation with Kan’s algorithm? is still likely to be a hard problem.

Here we describe explicitly the algorithm for computing FCPs given a boson
sampling set-up and analyse the computational cost of resolving FCPs with this set-
up. As in the rest of the work we limit ourselves to the case of 0 K with the
generalization to finite temperature being the subject of future work.

The goal is to resolve the function FCP(w,;,) in equation (8) to a fixed precision
€rcp in the function value at a fixed resolution A in the value of w,;. We also take
as input values the number of vibrational modes M, final vibrational frequencies {w} }
and a maximum frequency of interest w,,,..

Consider the FCP on the interval [0, w,,,,] and discretize this interval uniformly
at a resolution of A, . The algorithm proceeds as follows. Prepare the state |¢), and
pass it into the boson sampling set-up. Measure at the output modes the photon
numbers {mm,} in each mode. Locate the discrete bin of the FCP that is non-zero and
corresponds to the measurement values of {m,}, and increment its value by one.
Repeat the experiment until the estimated statistical error of the average values in
each discrete bin of FCP is below the desired threshold epq,. Denote the total
number of samples taken as Ng, .

NATURE PHOTONICS | www.nature.com/naturephotonics

To assess the algorithm, we rewrite it as a stochastic sampling problem over a
probability distribution given by the boson sampling device. We observe that
Py = [(m|U|¢)|? is a normalized probability distribution, and the one naturally
sampled at unit cost by a boson sampling device. As such, an FCP at a given
frequency is equivalent to the average value of f(m) = 8(wy, — >y wjmy) over the
probability distribution P, which we denote (f),. By simply computing the average
of Ny, independent samples |s;) taken from the device, that is:

FCP=(f)p =

1 Noamp
E ) 14
N, Samp = f(S* ) ( )

one obtains an estimate of the FCP. By the central limit theorem, the number of
samples required to reach a desired precision epcp scales as var(f) / €}cp. As the
Kronecker delta function is constrained to have a value of either 0 or 1, the variance
of fin this case can be bounded by 1, and the number of expected samples to
converge FCP for a given frequency may be bounded by a constant dictated by the
fixed precision €pcp. Also, this constant bound is an upper bound on the number of
required samples, and some distributions and experiments will require far fewer
samples. For example, distributions with a small number of peaks (at the resolution
determined by A, ) may converge extremely rapidly.

Unitary transformations. The specific form of the unitary operators that appear in
the Doktorov transformation as reported in equation (7) is given by [31]

A A 1
toat At
Da/ﬁa Dy =2 +726 (15)
Q atof 1, 1\t 1 / 71\ A
Sya'S)y :E(Q +0 )a +E(Q -0 )a (16)

(@-0Ma (17)
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