
All Majorana Models with Translation Symmetry are Supersymmetric

Timothy H. Hsieh,1,* Gábor B. Halász,1 and Tarun Grover2,1
1Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

2Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
(Received 3 May 2016; published 11 October 2016)

We establish results similar to Kramers and Lieb-Schultz-Mattis theorems but involving only translation
symmetry and for Majorana modes. In particular, we show that all states are at least doubly degenerate in
any one- and two-dimensional array of Majorana modes with translation symmetry, periodic boundary
conditions, and an odd number of modes per unit cell. Moreover, we show that all such systems have an
underlying N ¼ 2 supersymmetry and explicitly construct the generator of the supersymmetry.
Furthermore, we establish that there cannot be a unique gapped ground state in such one-dimensional
systems with antiperiodic boundary conditions. These general results are fundamentally a consequence of
the fact that translations for Majorana modes are represented projectively, which in turn stems from the
anomalous nature of a single Majorana mode. An experimental signature of the degeneracy arising from
supersymmetry is a zero-bias peak in tunneling conductance.
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A Majorana mode is a strange concept. Formally, it
represents

ffiffiffi
2

p
degree(s) of freedom because two

Majorana modes constitute a single qubit or spinless
fermion. By construction, the Majorana mode is its own
antimode: its creation and annihilation operators are iden-
tical [1]. While the mathematical existence of Majorana
modes arises simply from a change of basis in the particle-
hole space, the physical manifestations of the above proper-
ties are extremely nontrivial [2] and important for quantum
computation purposes [3–5]. The fact that a Majorana mode
is only a fraction of a physical electron or qubit suggests the
possibility of encoding information in two widely separated
Majorana modes, each of which is immune to local
decoherence. Furthermore, the Hermitian nature of the
Majorana mode forces it to exist at zero energy in the
superconducting gap of physical systems, allowing exper-
imentalists to zero in on finding a zero-bias peak in
tunneling, which is necessary if aMajoranamode is present.
There has been tremendous effort [6–10] toward realiz-

ing these Majorana modes at the end points of both one-
dimensional topological superconductors in nanowires
[11–15] and atomic chains [16], as well as from two-
dimensional interfaces between topological insulators and
superconductors [17–19]. The increasingly compelling
evidence for single Majorana modes and the substantial
activity in this field suggest that scaling the system to
realize multiple Majorana modes along a line or in a two-
dimensional grid may be realized in the near future. In such
setups involving lattices of emergent Majorana modes, the
low energy effective Hamiltonian involves interactions
between such modes, and such models host abundant
and fascinating phenomenology. For example, two- [20]
and three-dimensional [21] lattices of Majorana zero modes
may provide new architectures for quantum information
processing and new topological phases.

Moreover, there have been several proposals that employ
Majorana modes for realizing supersymmetry, which is a
highly appealing concept from particle physics [22–25],
relating bosonic and fermionic modes to each other. Though
signatures of it have yet to be observed, there are several
condensed matter systems in which supersymmetry may
emerge at long time and distance scales (“scaling limit”),
especially close to a critical point [26–30]. In particular, the
supersymmetric tricritical Ising model may be realized at a
critical point of Majorana systems [28,31]. Furthermore,
time reversal acts as a supersymmetry on vortices of
topological superconductors [32]. However, exact super-
symmetry in lattice models typically requires fine-tuned
Hamiltonians [33–38].
In this work, we show that all Majorana systems with

translation symmetry and an odd number of Majorana
modes per unit cell exhibit N ¼ 2 supersymmetry and
we explicitly construct its generator and identify its exper-
imental consequences. For one-dimensional systems with
periodic boundary conditions, we establish a Kramers-like
theorem [39] but for translation, not time-reversal sym-
metry: we show that every energy level is at least doubly
degenerate. With antiperiodic boundary conditions, we
establish a result along the lines of Lieb-Schultz-Mattis
[40] and rule out the possibility of a unique gapped ground
state, using recent results for spin chains [41–44]. For two-
dimensional systems, we also establish at least twofold
degeneracy for all states and for all system dimensions. The
essence of all these results is the fractional nature of the
Majorana mode. Each unit cell, with an odd number of
Majoranamodes, cannot exist intrinsically, and therefore the
symmetry group involving translations and fermion parity is
represented projectively. Wewill now illustrate this in detail
and conclude by mentioning several experimental venues
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for our results, in which a striking signature of supersym-
metry is a zero-bias peak in tunneling experiments.
1D, periodic boundary conditions.—Consider N (even,

to have a well-defined total Hilbert space) Majorana
modes fγigi¼1;…;N localized at N sites spaced around a
ring (Fig. 1), and consider general Hamiltonians invariant
under translation by one site and with periodic boundary
conditions:

H ¼
XN
i¼1

Hi: ð1Þ

We make no assumptions on the structure of Hi other than
translation invariance and the conservation of fermion
parity. In particular, let P̂≡ iN=2

Q
N
i¼1 γi be the fermion

parity operator, for which we have ½P̂; Hi� ¼ ½P̂; H� ¼ 0.
Let T be translation by one site:

T̂γiT̂
−1 ¼ γiþ1ðmod NÞ: ð2Þ

By assumption,

T̂HiT̂
−1 ¼ Hiþ1ðmod NÞ ð3Þ

⇒ ½T̂; H� ¼ 0: ð4Þ
However, translation and fermion parity anticommute:

T̂ P̂ T̂−1 ¼ iN=2

�YN
i¼2

γi

�
γ1 ¼ −P̂; ð5Þ

because N is even and γ1 is anticommuted through an odd
number of Majorana modes to return to the beginning. We
note that the fact that P and T can anticommute has been
used to classify fermionic phases protected by translation
symmetry [45]. It follows that every eigenstate of H is at
least doubly degenerate: if Hjψi ¼ Ejψi and Pjψi ¼ pjψi
(p ¼ �1), then HTjψi ¼ THjψi ¼ ETjψi and PTjψi ¼
−TPjψi ¼ −pTjψi, and thus Tjψi is also an eigenstate
with energy E and orthogonal to jψi. A similar algebraic
structure (but not involving translation) was used in
Ref. [46] to establish spectrum doubling.
Degeneracy as a consequence of N ¼ 2 supersym-

metry.—We now show that all translationally invariant
Majorana Hamiltonians in 1D with periodic boundary
conditions and an odd number of Majorana modes per unit
cell are supersymmetric. The twofold degeneracy of the
spectra found in the previous section can then be thought of
as a consequence of this underlying supersymmetry.
We first shift all the eigenvalues of the HamiltonianH by

a constant so that they are all non-negative. Then we define
the following fermionic, non-Hermitian operator Q̂:

Q̂ ¼
ffiffiffiffi
H
2

r
T̂ð1̂þ P̂Þ; ð6Þ

where 1̂ is the identity operator. Clearly, Q̂ commutes with
the Hamiltonian H: ½H; Q̂� ¼ 0. Most importantly, due to
the relation fT̂; P̂g ¼ 0, one finds

Q̂2 ¼ ðQ̂†Þ2 ¼ 0; ð7Þ
fQ̂; Q̂†g ¼ 2H: ð8Þ

Therefore, Q̂ acts as the generator of an N ¼ 2 supersym-
metry (N equals 2 because Q̂ is a non-Hermitian operator
and can be decomposed as Q̂ ¼ Q̂1 þ iQ̂2, where Q̂1 and
Q̂2 are Hermitian) [47]. Thus, allMajorana Hamiltonians in
1D that have an odd number of Majorana modes per unit
cell with periodic boundary conditions furnish an N ¼ 2
supersymmetry.
Supersymmetry naturally explains the results derived in

the previous section on the nature of spectra. All energy
eigenvalues are doubly degenerate, and the corresponding
eigenstates can be chosen as fermion parity eigenstates with
opposite parity. Explicitly, given an eigenstate jniB with
energy En and fermion parity þ1, its fermionic partner
eigenstate, which has the same energy eigenvalue En but
opposite parity, is given by

jniF ¼ Q̂jniBffiffiffiffiffiffiffiffi
2En

p ; ð9Þ

where we have normalized so that FhnjniF ¼ 1. The
opposite fermion parity of jniF follows because
fP̂; Q̂g ¼ 0.
Because of the factor of 1=

ffiffiffiffiffiffiffiffi
2En

p
in Eq. (9), in a general

supersymmetric theory, the existence of supersymmetric
partner eigenstates is guaranteed only when En ≠ 0.
However, in our case, the zero of energy plays no special
role (recall that, generically, we already have to shift all
energy levels by a constant so that En ≥ 0), and therefore,
the supersymmetric partner eigenstates exist for all n,
including the ground state. Therefore, the Witten index,
which is defined as the difference between the number of
bosonic and fermionic ground states, is zero.
1D, antiperiodic boundary conditions.—Local

Hamiltonians of the above type but with antiperiodic
boundary conditions commute with the twisted translation
operator ~T, which has the action

~̂Tγi ~̂T
−1 ¼ γiþ1 ði < NÞ; ð10Þ
~̂TγN ~̂T

−1 ¼ −γ1: ð11Þ

Since ~̂T commutes with P̂, the degeneracy found above is
not required here.
However, we now show that for such Hamiltonians with

antiperiodic boundary conditions, it is not possible for there
to be both a unique ground state and a finite excitation gap
in the thermodynamic limit. Such constraints, with origins
in the Lieb-Schultz-Mattis theorem, have been recently
established [41,42] for spin chains in which each unit cell
transforms under a projective representation of a global
symmetry (e.g., time reversal). We will now make contact
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with these recent results by doubling the Majorana system
and reinterpreting it as a spin system with additional
symmetry from the doubling construction.
Assume for the sake of contradiction that the

Hamiltonian H has a unique gapped ground state jψ0i.
Consider the doubled system HD ¼ H þ H̄, where H̄ is
simply a second copy of H with Majorana operators
represented by γ̄. Since each subsystem has a unique
gapped ground state, the composite HD also has a unique
gapped ground state jψ0i ⊗ jψ0i. We now Jordan-Wigner
transform HD into a spin system:

γi ¼
�Y

j<i

σzj

�
σxi ; ð12Þ

γ̄i ¼
�Y

j<i

σzj

�
σyi : ð13Þ

Care must be taken because the spin system with fixed
boundary conditions only corresponds to a fixed fermion
parity sector of the fermionic system. It is straightforward
to check that the spin system with periodic boundary
conditions corresponds to the fermion system with anti-
periodic boundary conditions and even fermion parity. This
sector includes the composite ground state jψ0i ⊗ jψ0i
(whose parity is the square of the parity of jψ0i).
Through the doubling construction, HD has a set of

discrete symmetries involving swapping the two chains.
There is a Z2 group generated by γ ↔ γ̄ and a Z4 group
generated by γ → −γ̄; γ̄ → γ. In the spin language, these
correspond, respectively, to the symmetries

σxi ↔ ð−1Þiþ1σyi ; ð14Þ
σzi → −σzi ; ð15Þ

and

σxi → −σyi ; ð16Þ
σyi → σxi ; ð17Þ
σzi → σzi : ð18Þ

Altogether, we have an on-site D4 group of rotations which
is represented projectively (by spin 1=2).
Hence, the arguments in Refs. [41–43] rule out a gapped

unique ground state of the spin system; in brief, a gapped
unique ground state in one dimension is short-range
entangled, and this local structure leads to incompatibility
between the projective representation of each unit cell
and translation symmetry. By contradiction, the original
fermion chain cannot have a unique ground state with a gap
in the thermodynamic limit.
Two and higher dimensions.—In this section, we first

consider two-dimensional systems with translation sym-
metry in both directions, periodic boundary conditions, and
a single Majorana mode per unit cell. If the system has one

odd length, then degeneracy of all energy levels follows by
bundling all Majorana modes along the odd length
direction into a supercell and applying the 1D argument
above. However, this method does not apply to systems
with two even dimensions, but nevertheless, the degen-
eracy holds. The fundamental reason is the fact, estab-
lished below, that the two translations TX and TY along the
two directions X and Y anticommute when both dimen-
sions NX and NY are even. This implies (in conjunction
with ½T̂X; H� ¼ ½T̂Y; H� ¼ 0) that all states have at least
twofold degeneracy.
We label the array of Majorana modes γi;j by their row i

and column j positions. Translation TX has projective
representation given by the product of translations for
each row:

T̂X ¼
YNY

r¼1

T̂X;r; ð19Þ

T̂X;r ¼ γr;1 exp

�
1

4

XNX

i;j¼1

Bijγr;iγr;j

�
: ð20Þ

See the Supplemental Material [48] for an explanation of
why the translation operator has the above form; the
essential feature is the Majorana operator γr;1 (B, an
antisymmetric matrix, is not important for our purposes).
Then

T̂YT̂XT̂
−1
Y ¼

YNY

r¼1

T̂YT̂X;rT̂
−1
Y ¼

YNY

r¼1

T̂X;rþ1ðmod NY Þ ð21Þ

¼ −T̂X; ð22Þ
because each T̂X;r involves an odd number of distinct
Majorana operators and there are an odd number (NY − 1)
of anticommutations required to return to the original
ordering of T̂X. Thus, fT̂X; T̂Yg ¼ 0, which ensures all
states have at least twofold degeneracy. We note that in this
case, the degeneracy is not due to supersymmetry [49].
The above results for periodic boundary conditions

readily generalize to three-dimensional systems with at
least one dimension of odd length, but we note that systems
with three even length dimensions need not be degenerate.
As a simple counterexample, consider a 2 × 2 × 2 array of
Majorana modes with four-Majorana interactions on each
face; this Hamiltonian has a unique ground state.
Applications and phenomenology.—Such Hamiltonians

involving interacting Majorana modes serve as effective
models for either the boundaries or vortex lattices
of topological superconductors. For example, a stack
of topological superconducting wires hosts an array of
Majorana modes localized at the ends of the wires (see
Fig. 2). The low energy physics of such systems is thus
described by the interactions of the Majorana modes, for
which our work is relevant.
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The particular interactions between Majorana modes
depend on how the wires are coupled to each other, and
as an example, a natural effective Hamiltonian for such
systems is considered in Refs. [31,50]:

H ¼ −it
X
j

γjγjþ1 þ g
X
j

γjγjþ1γjþ2γjþ3: ð23Þ

For a particular ratio of t=g, the above system is in the
(supersymmetric) tricritical Ising universality class [31].
However, our work demonstrates that for all values of t,
g, the above system exhibitsN ¼ 2 supersymmetry, and as a
consequence, all energy levels are at least doubly degenerate.
Such degeneracy between states of opposite fermion

parity has a distinct signature in tunneling experiments: for
a point contact located near the end point of one topological
superconducting wire, there will be a zero-bias peak in the
tunneling conductance. However, because the operator Q
(which connects a state to its superpartner) is generically
nonlocal, the zero-bias peak will be harder to observe as
system size grows. More precisely, for a point contact to a
noninteracting normal lead near the end point of wire j, the
tunneling conductance is G ∼ e2=h if the temperature and
the voltage bias are both smaller than Λ� ∝ jFh0jγjj0iBj2,
where j0iF and j0iB are the degenerate ground-state

superpartners [51,52]. For the Hamiltonian in Eq. (23),
we find that jFh0jγjj0iBj2 ¼ 2=N for any system size N in
the noninteracting case of g ¼ 0. Furthermore, by means of
exact diagonalization, we verify that jFh0jγjj0iBj2 ∝ Nν,
with an exponent ν ¼ −1.0� 0.1 in the range of 8 ≤ N ≤
20 for all parameter values jg=tj ≤ 1. For relatively small
numbers of superconducting wires (which are realistic for
experiments), we therefore expect the zero-bias peak to be
observable. Note that while the zero-bias peak is expected
for a single Majorana mode, it is generically not present
for an even number of modes; the supersymmetry is
crucial here.
There are other routes toward experimental realization of

the many models of the above type, including Abrikosov
vortex lattices on the surface of topological insulators [53]
and Josephson-coupled topological superconductor islands
[54], in which charging energy mediates interactions
between the emergent Majorana modes.
Summary and discussion.—We have shown that one- and

two-dimensional systems of Majorana modes with trans-
lation symmetry, periodic boundary conditions, and odd
number of modes per unit cell have at least twofold
degeneracy for every state in the energy spectrum and that
this is a reflection of an underlyingN ¼ 2 supersymmetry.
Moreover, we have shown that such a one-dimensional
system with antiperiodic boundary conditions cannot have
a unique gapped ground state in the thermodynamic limit.
Such Majorana systems may be realized at the boundaries
or vortex lattices of topological superconductors, and the
degeneracy arising from supersymmetry is potentially
manifest as a zero-bias peak in tunneling experiments.
Our results motivate the conjecture that for all transla-

tionally invariant Majorana systems with an odd number of
modes per unit cell, there cannot be a unique gapped ground
state in the thermodynamic limit, regardless of dimension or
boundary conditions. This leaves the possibilities of gap-
lessness and symmetry breaking in one dimension, and
the additional possibility of topological order in higher
dimensions. Furthermore, while our doubling analysis for
antiperiodic boundary conditions in one dimensions
conveniently makes use of recent spin system results, it
would be very enlightening to find a direct proof of the
result without having to double the system. It is not obvious
to us how to apply the flux insertion arguments given by
Oshikawa [55] and Hastings [56] in our case, since the
symmetries are discrete.
Translation symmetry is only one of many crystal

symmetries that can be considered. Other natural exten-
sions include mirror reflection, inversion, and perhaps
nonsymmorphic symmetries as well. The effect of these
symmetries and their interplay with on-site symmetries
such as time reversal is an intriguing direction for future
work. For now, we note as a small extension of our work
that mirror reflection and inversion each anticommute with
fermion parity if the number of Majorana modes that are

FIG. 1. Left: Translationally invariant Majorana modes, with
periodic boundary conditions, have at least twofold degeneracy in
the energy spectrum. The underlying supersymmetry requires
that each energy level contains pairs of fermionic and bosonic
superpartners. Right: The same system, with antiperiodic boun-
dary conditions (depicted by a slash through a bond), cannot have
a unique gapped ground state in the thermodynamic limit.

FIG. 2. Our work applies to effective Hamiltonians (green)
describing the Majorana modes (blue) emerging at the end
points of topological superconductors (vertical chains). Each
oval is a spinless fermion consisting of two Majorana fermions
(black dots).
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transformed into other Majorana modes (and not them-
selves) is 4nþ 2 for n ∈ Z. We focused on translation
symmetry because it enables the simplest manifestation of
supersymmetry.
Finally, we note that the double degeneracy of the full

spectrum discussed in our Letter can be thought of as
ergodicity breaking that exists at all temperatures. This is
because the degenerate eigenstates that differ in fermion
parity cannot be connected by a local operator in the
thermodynamic limit [note that the operator Q̂ in Eq. (6) is
nonlocal in general]. Furthermore, if the system does not
spontaneously break translational symmetry, finite energy
density degenerate eigenstates jniF and jniB will satisfy

FhnjÔjniF ¼ BhnjÔjniB and BhnjÔjniF ¼ 0 for all local
operators O, which is reminiscent of topological
order [4,57].

We thank Leon Balents for helpful comments. All
authors are supported by a fellowship from the Gordon
and Betty Moore Foundation (Grant No. 4304). T. G. also
acknowledges start-up funds from UCSD.

*thsieh@kitp.ucsb.edu
[1] E. Majorana, Nuovo. Cim. 14, 171 (1937).
[2] See F. Wilzcek, Nat. Phys. 5, 614 (2009), and references

therein.
[3] A. Kitaev, Phys. Usp. 44, 131 (2001).
[4] A. Kitaev, Ann. Phys. (Amsterdam) 303, 2 (2003).
[5] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S.

Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[6] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[7] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[8] M.M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298

(1988).
[9] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

[10] C. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113
(2013).

[11] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.
Lett. 105, 077001 (2010).

[12] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,
177002 (2010).

[13] J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Phys. Rev.
Lett. 109, 267002 (2012).

[14] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Science 336, 1003
(2012).

[15] A. P. Higginbotham, S. M. Albrecht, G. Kiršanskas, W.
Chang, F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J.
Nygård, K. Flensberg, and C. M. Marcus, Nat. Phys. 11,
1017 (2015).

[16] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science
346, 602 (2014).

[17] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[18] J. R. Williams, A. J. Bestwick, P. Gallagher, S. Sae Hong,

Y. Cui, A. S. Bleich, J. G. Analytis, I. R. Fisher, and

D. Goldhaber-Gordon, Phys. Rev. Lett. 109, 056803
(2012).

[19] C. Kurter, A. D. K. Finck, P. Ghaemi, Y. S. Hor, and D. J.
Van Harlingen, Phys. Rev. B 90, 014501 (2014).

[20] S. Vijay, T. Hsieh, and L. Fu, Phys. Rev. X 5, 041038
(2015).

[21] S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 92, 235136
(2015).

[22] J. Wess and J. Bagger, Supersymmetry and Supergravity
(Princeton University Press, Princeton, 1992).

[23] J. L. Gervais and B. Sakita, Nucl. Phys. B34, 632
(1971).

[24] J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974).
[25] S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150

(1981).
[26] L. Balents, M. P. A. Fisher, and C. Nayak, Int. J. Mod. Phys.

B 12, 1033 (1998).
[27] S.-S. Lee, Phys. Rev. B 76, 075103 (2007).
[28] T. Grover, D. Sheng, and A. Vishwanath, Science 344, 280

(2014).
[29] P. Ponte and S.-S. Lee, New J. Phys. 16, 013044 (2014).
[30] S.-K. Jian, Y.-F. Jiang, and H. Yao, Phys. Rev. Lett. 114,

237001 (2015).
[31] A. Rahmani, X. Zhu, M. Franz, and I. Affleck, Phys. Rev.

Lett. 115, 166401 (2015).
[32] X.-L. Qi, T. L. Hughes, S. Raghu, and S.-C. Zhang, Phys.

Rev. Lett. 102, 187001 (2009).
[33] P. Fendley, K. Schoutens, and J. de Boer, Phys. Rev. Lett.

90, 120402 (2003).
[34] A. Feiguin, S. Trebst, A. W.W. Ludwig, M. Troyer, A.

Kitaev, Z. Wang, and M. H. Freedman, Phys. Rev. Lett. 98,
160409 (2007).

[35] L. Huijse, J. Halverson, P. Fendley, and K. Schoutens, Phys.
Rev. Lett. 101, 146406 (2008).

[36] L. Huijse, B. Bauer, and E. Berg, Phys. Rev. Lett. 114,
090404 (2015).

[37] Y. Yu and K. Yang, Phys. Rev. Lett. 105, 150605
(2010).

[38] B. Bauer, L. Huijse, E. Berg, M. Troyer, and K. Schoutens,
Phys. Rev. B 87, 165145 (2013).

[39] H. Kramers, Proc. Amsterdam Acad. 33, 959 (1930).
[40] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16, 407

(1961).
[41] H. Watanabe, H. Po, A. Vishwanath, and M. Zaletel, Proc.

Natl. Acad. Sci. U.S.A. 112, 14551 (2015).
[42] X. Chen, Z. C. Gu, and X. G. Wen, Phys. Rev. B 83, 035107

(2011).
[43] D. Pérez-García, M. M. Wolf, M. Sanz, F. Verstraete, and

J. I. Cirac, Phys. Rev. Lett. 100, 167202 (2008).
[44] See also S. Parameswaran, A. Turner, D. Arovas, and A.

Vishwanath, Nat. Phys. 9, 299 (2013).
[45] Y. Bahri and A. Vishwanath, Phys. Rev. B 89, 155135

(2014).
[46] J. Lee and F. Wilzcek, Phys. Rev. Lett. 111, 226402

(2013).
[47] One could equally well choose Q̂0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiðH=2Þp

T̂ð1̂ − P̂Þ as
the supersymmetric generator. Q̂0 and Q̂ are not independent
because they are unitarily related: Q̂0 ¼ T̂†Q̂ T̂.

[48] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.166802 for a

PRL 117, 166802 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

14 OCTOBER 2016

166802-5

http://dx.doi.org/10.1007/BF02961314
http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevB.37.9298
http://dx.doi.org/10.1103/PhysRevB.37.9298
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.109.267002
http://dx.doi.org/10.1103/PhysRevLett.109.267002
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1038/nphys3461
http://dx.doi.org/10.1038/nphys3461
http://dx.doi.org/10.1126/science.1259327
http://dx.doi.org/10.1126/science.1259327
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.109.056803
http://dx.doi.org/10.1103/PhysRevLett.109.056803
http://dx.doi.org/10.1103/PhysRevB.90.014501
http://dx.doi.org/10.1103/PhysRevX.5.041038
http://dx.doi.org/10.1103/PhysRevX.5.041038
http://dx.doi.org/10.1103/PhysRevB.92.235136
http://dx.doi.org/10.1103/PhysRevB.92.235136
http://dx.doi.org/10.1016/0550-3213(71)90351-8
http://dx.doi.org/10.1016/0550-3213(71)90351-8
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1016/0550-3213(81)90522-8
http://dx.doi.org/10.1016/0550-3213(81)90522-8
http://dx.doi.org/10.1142/S0217979298000570
http://dx.doi.org/10.1142/S0217979298000570
http://dx.doi.org/10.1103/PhysRevB.76.075103
http://dx.doi.org/10.1126/science.1248253
http://dx.doi.org/10.1126/science.1248253
http://dx.doi.org/10.1088/1367-2630/16/1/013044
http://dx.doi.org/10.1103/PhysRevLett.114.237001
http://dx.doi.org/10.1103/PhysRevLett.114.237001
http://dx.doi.org/10.1103/PhysRevLett.115.166401
http://dx.doi.org/10.1103/PhysRevLett.115.166401
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevLett.90.120402
http://dx.doi.org/10.1103/PhysRevLett.90.120402
http://dx.doi.org/10.1103/PhysRevLett.98.160409
http://dx.doi.org/10.1103/PhysRevLett.98.160409
http://dx.doi.org/10.1103/PhysRevLett.101.146406
http://dx.doi.org/10.1103/PhysRevLett.101.146406
http://dx.doi.org/10.1103/PhysRevLett.114.090404
http://dx.doi.org/10.1103/PhysRevLett.114.090404
http://dx.doi.org/10.1103/PhysRevLett.105.150605
http://dx.doi.org/10.1103/PhysRevLett.105.150605
http://dx.doi.org/10.1103/PhysRevB.87.165145
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1073/pnas.1514665112
http://dx.doi.org/10.1073/pnas.1514665112
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevLett.100.167202
http://dx.doi.org/10.1038/nphys2600
http://dx.doi.org/10.1103/PhysRevB.89.155135
http://dx.doi.org/10.1103/PhysRevB.89.155135
http://dx.doi.org/10.1103/PhysRevLett.111.226402
http://dx.doi.org/10.1103/PhysRevLett.111.226402
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.166802
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.166802
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.166802
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.166802
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.166802
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.166802
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.166802


review of the Majorana representation of O(N) and the
explicit form of the translation operator.

[49] However, one can consider a “screw” boundary condition in
which translation TY across a boundary is supplemented
by a translation in X; the array is then effectively a
one-dimensional chain in which the head of one column
is identified with the tail of the next column. For this case,
TY anticommutes with fermion parity and the system is thus
supersymmetric.

[50] A. Milsted, L. Seabra, I. C. Fulga, C. W. J. Beenakker, and
E. Cobanera, Phys. Rev. B 92, 085139 (2015).

[51] S. Das Sarma, M. Freedman, and C. Nayak, Quantum Inf.
Process. 1, 15001 (2015).

[52] R. M. Lutchyn and J. H. Skrabacz, Phys. Rev. B 88, 024511
(2013).

[53] C.-K. Chiu, D. I. Pikulin, and M. Franz, Phys. Rev. B 91,
165402 (2015).

[54] S. Vijay and L. Fu, Phys. Scr. 2016, T168 (2016).
[55] M. Oshikawa, Phys. Rev. Lett. 84, 1535 (2000).
[56] M. Hastings, Phys. Rev. B 69, 104431 (2004).
[57] X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).

PRL 117, 166802 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

14 OCTOBER 2016

166802-6

http://dx.doi.org/10.1103/PhysRevB.92.085139
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1103/PhysRevB.88.024511
http://dx.doi.org/10.1103/PhysRevB.88.024511
http://dx.doi.org/10.1103/PhysRevB.91.165402
http://dx.doi.org/10.1103/PhysRevB.91.165402
http://dx.doi.org/10.1103/PhysRevLett.84.1535
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.41.9377

