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Thermoelectrics are promising by directly generating electricity from waste heat. 

However, (sub-) room-temperature thermoelectrics have been a long-standing 

challenge, due to the vanishing electronic entropy at low temperature1. Topological 

materials2-4 offer a new avenue for energy harvesting applications5. Recent theories 

predicted that topological semimetals at the quantum limit can lead to non-

saturating longitudinal thermopower6 as well as a quantized thermoelectric Hall 

conductivity approaching a universal value7. Here, we experimentally demonstrate 

the non-saturating thermopower and the signature of quantized thermoelectric 

Hall conductivity in topological Weyl semimetal (WSM) tantalum phosphide 
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(TaP). An ultrahigh longitudinal thermopower 𝑺𝒙𝒙 = 𝟏. 𝟏 × 𝟏𝟎𝟑𝛍𝐕/𝐊 and a power 

factor ~𝟓𝟎𝟎𝛍𝐖/𝐜𝐦/𝐊𝟐  are observed ~40K. Moreover, the thermoelectric Hall 

conductivity develops a plateau at high fields and low temperatures, which further 

collapses onto a single curve determined by universal constants. Our work 

highlights the unique WSM electronic structure and topological protection of Weyl 

nodes toward low-temperature energy harvesting applications. 

 

Over two-thirds of global energy production is rejected as waste heat. Thermoelectrics 

are attractive by directly converting waste heat into electricity without moving parts. 

The efficiency of thermoelectric energy conversion is an increasing function of a 

dimensionless quantity 
2S

zT T



 , where σ, S, κ denote the electrical conductivity, 

thermopower, and total thermal conductivity, respectively. Conventional 

thermoelectrics largely focus on tuning the thermal and electrical conductivities. Many 

efforts, such as lowering dimensionality8, microstructuring9,10 and nanostructuring11,12, 

share the same principle: By increasing the scattering of major heat carriers of long 

mean-free-path phonons without affecting the short mean-free-path electrons, a level of 

independent tunability between electrical conductivity σ and thermal conductivity κ can 

be achieved, such as the phonon-glass electron-crystal state13. However, less attention 

was paid to improve the thermopower S, even though the 
2S  dependence of zT makes 

such improvement appealing. Moreover, thermopower S is proportional to the entropy 

per carrier and is therefore suppressed at reduced temperature14. For this reason, current 

thermoelectrics are generally effective only at elevated temperatures, and there is a 

pressing need for thermoelectrics that work efficiently at room-temperature and below. 

Filling this need requires new materials that can exhibit large electronic entropy at low 

temperatures while maintaining significant electrical conductivity. 
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One approach to creating large electronic entropy is to use bandstructure engineering 

through low carrier density, partially-filled carrier pockets15; a similar principle has also 

been applied to semimetals, such as WSMs, to explore arbitrarily low carrier densities16-

18. However, there is a fundamental upper bound, set by the maximum entropy of the 

ideal classical gas. In this light, a magnetic field offers an additional incentive to break 

the upper bound, since the linear field-dependence of the density of states (DOS) 

enables accommodation of unbounded macroscopic number of states in each Landau 

level (LL), yet in conventional thermoelectrics, charge carriers will be localized at high 

B-field due to the cyclotron motion.  

The recent development of topological WSMs brings new hope to break the 

fundamental limit met by conventional thermoelectrics, originating from the topological 

protection of electronic states. In particular, it is worthy to note that the WSM system 

has a unique n=0 LL. The n=0 LL in a WSM has a highly unusual energy-independent 

DOS 
4 2( 0) 4f Fg n N Be v  increasing linearly with B, which can create huge 

electronic entropy. Meanwhile, it will remain gapless under high field thanks to the 

topological robustness of Weyl nodes. Consequently, recent theories predicted a non-

saturating longitudinal thermopower and quantized thermoelectric Hall conductivity6,7, 

where electrons and holes contribute additively to high thermoelectric performance 

without experiencing localization.  

In this work, we carry out high-precision thermoelectric measurements using a 

centimeter-sized crystal WSM TaP (Figure 1a and b, and Methods). The Fermi level is 

fine-tuned through the synthesis procedure to approach the n=0 LL near the W2 Weyl 

node (Figure 1g). In this system, large, non-saturating longitudinal thermopower 𝑆𝑥𝑥 is 

observed, which exhibits linear dependence with B-field, and reaches 1100 μV/K 

without saturation at B=9T. Additionally, the signature of the quantized thermoelectric 

Hall conductivity is observed, where at low-temperature and high fields, the 
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thermoelectric Hall conductivity [ ]xy xy  S ρ  is independent of B-field, and collapses 

into a single curve determined by number of fermion flavors, Fermi velocity, and 

universal constants. Moreover, evidence of Wiedemann-Franz law violation further 

indicates a breakdown of quasiparticle behaviors. Our work paves the way for a new 

class of materials that satisfies key criteria to fill the technological gap for low-

temperature thermoelectric energy harvesting.  

Quantum oscillations. We first present the longitudinal magnetoresistance (MR) 

data, where the magnetic field is applied perpendicular to current. Giant 

magnetoresistance was observed, where at T<25K, the magnetoresistance 

𝑀𝑅 ≡ (𝑅(9T) − 𝑅(0T)) 𝑅(0T)⁄   exceeds 105%  (Figure 1c). This is a signature of 

electron-hole compensation, which is further confirmed by the two-band model fitting 

of conductivity, with 𝑛𝑒 = 2.39 × 1019/cm3  and 𝑛ℎ = 2.35 × 1019/cm3  at T=2.5K, 

along with a high mobility of ~1 × 105cm2/(V ∙ s) (Supplementary Information III). 

The background-subtracted 𝑀𝑅 , termed ∆𝑀𝑅 , exhibits Shubnikov-de Haas (SdH) 

oscillations, which are plotted against 1/B to determine the LL indices (Figure 1d). The 

LL fan diagram analysis indicates a contribution from two LLs: an n=2 LL and n=0 LL 

(Figure 1f). After Fourier transforming ∆𝑀𝑅, two low-frequency quantum oscillations 

𝐹𝛼 = 4T  and 𝐹𝛽 = 18T  are observed, matching the oscillation frequency from the 

carrier pockets at n=0 LL and n=2 LL. The intersection of the linear LL index plot (-

0.037 for n=0 LL and +0.065 for n=2) lying between -1/8 to +1/8 indicates that the two 

pockets are both topologically nontrivial19,20 (Supplementary Information IV), from 

which we attribute the n=2 LL to the electron pocket of the W1 Weyl node, and the n=0 

LL to the hole pocket of the W2 Weyl node (Figure 1g). Moreover, we see that the 

pocket the W2 Weyl node enters the quantum limit at 𝐵~3.8T. There is an alternate 

way to see this without using the LL index intersection. For 𝐹𝛽, since the dispersion of 

Weyl fermions of the nth LL at 𝑘𝑧 = 0 is given by sgn( ) 2n FE n v e B n  while the 
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frequency F is related to the Fermi-surface area FS  as 
2

22 2

F
F

F

E
F S

e e v
  , when 

~n FE E , we have ~F B n . This leads to an agreement between n=2 LL and the 

measured 𝐹𝛽 = 18T at 𝐵~9T. For 𝐹𝛼, the very low frequency 4T strongly suggests an 

extremely small Fermi surface. Since the spacing between n=1 and n=0 LLs is given by 

1 0 2F FE E v e B E B F   , the condition to reach the quantum limit (n=0 LL) at 

the W2 Weyl node is met as long as 4TB F  . This value agrees well with the 

above LL index analysis.  

Non-saturating thermopower. Having determined the carrier characteristics, we 

carried out thermoelectric measurements using a diagonal offset geometry (Figure 2a), 

where the electrical and thermal transport along both the longitudinal and transverse 

directions can be acquired together by flipping the field polarity (Supplementary 

Information V). The longitudinal thermopower 𝑆𝑥𝑥 is shown in Figure 2b, where a giant 

magnitude 𝑆𝑥𝑥 = 1.07 × 103μV/K without sign of saturation is observed at 𝐵 = 9T and 

𝑇 = 40K. One prominent feature is that 𝑆𝑥𝑥 develops a double-peak behavior, which 

may be attributed to the two types of Weyl nodes – the higher mobility and lower 

density W2 node experiences reduced phonon scattering and thus can persist to higher 

temperatures. Quantitatively, it has been predicted that 𝑆𝑥𝑥 obeys a simple formula6:  

 

2

2 eff12 ( )

fB
xx

F h e

Nk TB
S

v n n



 (1) 

where
fN  is number of Weyl nodes, h en n  is the net carrier density, and eff

Fv  is an 

effective Fermi velocity that accounts for the presence of two types Weyl nodes in TaP, 

while the theory was originally derived for one type.  

The linearity of 𝑆𝑥𝑥  with T and B is shown in Figures 2c and 2d, respectively. In 

particular,  𝑆𝑥𝑥 ∝ 𝐵 is observed. It is also noteworthy that Eq. (1) is in quantitative 

agreement with our result if we adopt the fitted value of the 
eff

Fv using Eq. (3), discussed 
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shortly. Such quantitative agreement is valid across all fields and up to ~40K and is a 

measure of the success of the effective model (Figure 2e). Moreover, a giant 

longitudinal power factor up to 𝑃𝐹 ≡ 𝑆𝑥𝑥
2 𝜌𝑥𝑥⁄ ~525μW/cm/K2  is further achieved 

(Figure 2f). This is an order-of-magnitude higher than the peak values of conventional 

thermoelectrics (e.g., 𝑃𝐹(SnSe)~10μW/cm/K2)21.  

Quantized thermoelectric Hall effect. Regarding the transverse thermoelectric 

properties, we see that the transverse thermopower 𝑆𝑥𝑦 also reaches a ~103μV/K peak 

value at 𝑇 = 40K (Figure 3a), moreover exhibiting a plateau. This plateau behavior is 

consistent with a recent report attributing it to the constant k-space volume regardless of 

the field-tuned Weyl-cone separation16, and should not be confused with the universal 

thermoelectric Hall conductivity 𝛼𝑥𝑦 . 
2 2( ) ( )xy xy xx xx xy xx xyS S        is shown in 

Figure 3b, where in the low-temperature range, the flatness with respect to B-field starts 

to emerge. In particular, under the low-temperature B Fk T E and high-field

2 2

F FB E ev limit, 𝛼𝑥𝑦 is predicted to approach the following universal value that is 

independent of B-field, disorder, carrier type or carrier density7:  

 

2 2

,ideal 2 eff3 (2 )

fB
xy

F

Nek
T

v





  (2) 

The temperature dependence of 𝛼𝑥𝑦  is shown in Figure 3c, where we see that the 

linearity holds up to 𝑇~10K. As a direct consequence, the xy T  curve collapses into a 

single curve at high fields (Figure 3d), where an ideal value 2

,ideal 0.6 A (K m)xy T   is 

determined (Figure 3e) by using eff 41.2 10 m/sFv    obtained from fitting with Eq. (3):  

 

0 0

0 0

( ) ( )

2

f z n z n z
xy

n B B

eN dk k k
s s

k T k T

   


 





     
     

    
  (3) 
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in which s is the electronic entropy function. The fitted chemical potential μ is 

consistent with the electrical transport measurements, while the Fermi velocity eff

Fv is 

lower than the Fv  at W2, since the n=2 LL at W1 Weyl node has nonlinear dispersion 

and will reduce the eff

Fv , which is reasonable (Figure 3f, 3g and Supplementary 

Information VI and VII). As a result, the experimental values generally agree with the 

ideal value ,idealxy T , and the factor of 2 quantitative difference can be traced back to 

the electron pocket at W1 Weyl node yet to reach the quantum limit.  

Breakdown of the Wiedemann-Franz Law. Wiedemann-Franz (WF) law is a 

robust empirical law stating that the ratio between the electronic thermal conductivity 

e  and electrical conductivity   is related by a universal factor of Lorenz number:  

 

22
8 2

0 2.44 10 WΩ K
3

e

Bk
L

T e

 



 
    

 
. (4) 

Recently, it has been reported that there is strong violation of WF law in 2D Dirac fluid 

of graphene22 and Weyl semimetal WP2
23 due to the collective electron hydrodynamics. 

Other behaviors of electrons, like quantum criticality24 or quasiparticle breakdown25,26, 

can also lead to the WF law violation. In this light, it is worthwhile to examine the 

validity of the WF law in the field-induced high-entropy state of TaP. To do so, it is 

crucial to properly separate e  from the lattice thermal conductivity ph . We adopt the 

following empirical relation by using the field-dependence of e 27:  

 
( )

( , ) ( )
1 ( )

e
ph xx

xx xx m

e

T
T B T

T B


 


 


. (5) 

where ( )e T  is a measure of zero-field electron mean free path and m is a factor related 

to the nature of scattering. Figure 4a demonstrates an example for such separation 

procedure. Using this method, we see that the extracted lattice thermal conductivity ph  

agrees well with the computed value from ab initio calculations (Figure 4b and 
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Methods), from which the phonon dispersions are also computed, and agree well with 

measured dispersion from inelastic scattering (Figure 4c). All these agreements indicate 

the reliability of the separation process. The corresponding electronic thermal 

conductivity e  and the Lorenz number is shown in Figure 4d and Figure 4e, 

respectively. At 0TB  , the agreement with the WF law is good. However, as field 

increases to 9TB  , a four-fold violation of WF law is observed (Figure 4d). The 

observed strong violation of the WF law hints at the possibility of field-driven 

quasiparticle breakdown in a large entropic system, and is subject to further 

investigation.  

In this work, we demonstrated a giant, non-saturating longitudinal thermopower and a 

quantized thermoelectric Hall conductivity in a WSM, both showing quantitative 

agreement with recent theoretical proposals. In fact, these two features are linked: as the 

quantum limit is approached, 𝑆𝑥𝑥~𝜌𝑥𝑦𝛼𝑥𝑦, and thus a constant 𝛼𝑥𝑦 naturally indicates 

an 𝑆𝑥𝑥 ∝ 𝐵 behavior since 𝜌𝑥𝑦 ∝ 𝐵 at high field. In addition, a field-driven breakdown 

of the WF law is observed. Given the promising magnitudes of thermopower and power 

factor, our work sheds light on a few essential requirements that high-performance 

room-temperature thermoelectrics should meet. These include a way to create giant 

electronic entropy and reduce carrier density, and a way of evading localization while 

maintaining high electrical conductivity. Interestingly, the n=0 LL state with 

topologically protected Weyl node in a WSM satisfies all these requirements. Our work 

thus enables promising application of topological materials to lead the breakthrough of 

thermoelectric materials working below room temperature.  
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Note Added: When we were finalizing this manuscript, we became aware of a similar 

work on Dirac semimetal28. The related work and our work mutually strengthened each 

other on the part of the quantized thermoelectric Hall effect.  
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Methods 

High-quality Single-crystal Growth. The single crystals of TaP were prepared by 

the vapor transport method. 3 grams of Ta (Beantown Chemical, 99.95%) and P 

(Beantown Chemical, 99.999%) powders were weighted, mixed and ground in a 

glovebox. The mixed powders were flame-sealed in a quartz tube which was 

subsequently heated to 700oC and dwelled for 20 hours for a pre-reaction. The obtained 

TaP powders were sealed in another quartz tube with 0.4 gram of I2 (Sigma 

Aldrich, >=99.8%) added. The tube containing TaP and I2 was then horizontally placed 

in a two-zone furnace. To improve the crystal size and quality, instead of setting a 

100oC temperature difference, we gradually increased the temperature difference from 

zero until the I2 transport agent started to flow. This process seems to be furnace- and 

distance- specific. In our case, the optimal temperatures for the two zones are 900oC and 

950oC, respectively, and the distance between the two heating zone is constantly 

optimized. With the help of the transport agent I2, the TaP source materials transferred 

from the cold end of the tube to the hot end and condensed at the hot end in a single-

crystalline form in 14 days.  The resulting products of TaP single crystals are 

centimeter-sized and have a metallic luster. Figure S1 exhibits a typical sample of TaP 

crystals.  

Sample Preparation for Measurements. Due to the very high electrical and 

thermal conductivities of TaP, it is difficult to do high-precision electrical and thermal 

transport measurements on the as-grown crystals. To magnify the electrical resistance 

and the temperature gradient in the electrical and thermal transport measurements, one 

piece of crystal was polished down to thin along the c-axis. Figure S2 shows top and 

side views of a thinned-down crystal whose thickness is only 0.17 mm.  
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Electrical and Thermal Transport Measurements. The electrical and thermal 

transport measurements were carried out with the electrical transport option (ETO) and 

the thermal transport option (TTO) of PPMS, respectively. The data about the quantum 

oscillations was measured with the ETO whereas the data about the thermoelectric 

(including resistivity) with the TTO. When we performed the ETO measurements we 

adopted a standard six-probe configuration and connected the longitudinal and 

transverse probes to two independent measurement channels. The details about the ETO 

measurement can be found in Figure S3a and Supplementary Information III. However, 

because the TTO has only one measurement channel, to measure the longitudinal and 

transverse thermal conductivities (κxx and κxy), resistivities (ρxx and ρxy) and Seebeck 

coefficients (Sxx and Sxy) simultaneously, we used a diagonal offset probe geometry for 

the thermal transport measurement, as shown in Figure S4a and S5a. For the detailed 

description about the TTO measurement, please check Supplementary Information IV. 

Computational Details. All the ab initio calculations are performed by Vienna Ab 

Initio Package (VASP)M1,M2 with projector-augmented-wave (PAW) pseudopotentials 

and Perdew-Burke-Ernzerhof (PBE) for exchange-correlation energy functionalM3. The 

geometry optimization of the conventional cell was performed with a 6 × 6 × 2 

Monkhorst-Pack grid of k-point sampling. The second-order and third-order force 

constants was calculated using a real space supercell approach with a 3×3×1supercell. 

The Phonopy packageM4 was used to obtain the second-order force constants. The 

thirdorder.py and ShengBTE packagesM5 were used to obtain the third-order force 

constants and relaxing time approximation was used to calculate the thermal 

conductivity. A cutoff radius of about 0.42 nm was used, which corresponds to 

including the fifth nearest neighbor when determining the third-order force constants. 
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To get the equilibrium distribution function and scattering rates using the third-order 

force constants, the first Brillouin zone was sampled with 30×30×10 mesh. 

Inelastic Scattering. Inelastic neutron scattering measurements were performed on 

the HB1 triple-axis spectrometer at the High-Flux Isotope Reactor at the Oak Ridge 

National Laboratory. We used a fixed Ef = 14.7 meV with 48’−40’−40’−120’ 

collimation and Pyrolytic Graphite filters to eliminate higher-harmonic neutrons. 

Measurements were performed using closed-cycle refrigerators between room 

temperature and the base temperature 4 K. Inelastic X-ray scattering was performed on 

the high-energy resolution inelastic x-ray (HERIX) instrument at sector 3-ID beamline 

of the Advanced Photon Source, Argonne National Laboratory with incident beam 

energy of 21.657 keV (λ=0.5725Å) and an overall energy resolution of 2.1 meV M6-M8. 

Incident beam focused on the sample using toroidal and KB mirror system. FWHM of 

beam size at sample position was 20 ×  20 μm2 (V ×  H). The spectrometer was 

functioning in the horizontal scattering geometry with a horizontally polarized radiation. 

The scattered beam was analyzed by a diced and spherically curved silicon (18 6 0) 

analyzers working at backscattering angle. The basic principles of such instrumentations 

are discussed elsewhere M9,M10. 
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Figure 1. Quantum oscillation of TaP. (a) The inversion-symmetry-breaking 

crystal structure and (b) the Brillouin zone of TaP, highlighting the locations of 

the inequivalent Weyl nodes W1 (filled circles) and W2 (empty circles). The 

Weyl nodes are paired as source “+” and sink “-” of Berry curvature, separated 

in momentum space. (c) Magnetoresistance (MR) as a function of magnetic 

field at different temperatures from 2.5K to 300K. A high (>105%) MR ratio is 

observed. (d) The MR measurement configuration (top) and relative ΔMR as a 

function of 1/B (bottom). (e) The Fourier transform of the MR showing a low 

oscillation frequency Fα=4T. This is a signature that in addition to the electron 

pocket from W1 Weyl node contributing to Fβ=18T, we are very close to the W2 

Weyl node. (f) The SdH oscillation and Landau level index plot, from which we 

obtained an n=2 Landau level and another n=0 Landau level. (g) The schematic 

bandstructure at finite magnetic fields of our TaP sample. 
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Figure 2. Non-saturating thermopower at high fields. (a) The schematics of 

the diagonal offset thermoelectric measurement geometry. (b) Longitudinal 

thermopower Sxx as a function of temperature at various fields. The double 

peaks emerge at ~33K and ~40K. (c) Sxx at low-temperature range, showing the 

quasi-linearity growth as a function of temperature. (d) Sxx replotted as a 

function of B, showing the unbounded linear growth with field. The onset of the 

linear behavior indicates the entering into the quantum limit regime. The 

oscillatory behavior ~20K at B=6T is caused by the quantum oscillation effect. 

(e) Sxx as a function of B at a few representative temperatures. The dashed 

lines are prediction using Eq. (1) by substituting the fitted vF from Eq. (3). (f) The 

power factor as a function of temperature. The black-dashed line is a reference 

peak value for SnSe. 
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Figure 3. The Quantized thermoelectric Hall effect. (a) Transverse 

thermopower Sxy as a function of magnetic field at different temperatures. (b) 

Thermoelectric Hall conductivity αxy as a function of magnetic field at different 

temperatures. The peak value is caused by the finite scattering effect. (c) 

Thermoelectric Hall conductivity αxy as a function of temperature at various 

fields. The inset shows a linear behavior of the αxy versus T curves at low 

temperatures. (d) αxy/T as a function of magnetic field collapses to a constant 

plateau at the quantum limit. (e) Values of the bandstructure parameters 

obtained by fitting αxy versus T using Eq. (3).  (f) Enlarged view of αxy/T at low 

temperatures indicating a convergence to the quantum limit. The gray dashed 

line gives the universal value obtained via fit of αxy/T. (g) The DOS of each LL, 

highlighting the unique n=0 LL in a WSM. At high-enough B, n=0 LL drives the 

DOS∝B. 
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Figure 4. The Wiedemann-Franz Law. (a) The schematics of the separation 

process of electronic thermal conductivity 𝜅𝑥𝑥
𝑒  from the lattice thermal 

conductivity 𝜅𝑥𝑥
𝑝ℎ

 using the field-dependence. (b) Separation of phonon and 

electronic contributions to the longitudinal thermal conductivity with inset 

displaying a computation (scattered points) of the phonon thermal conductivity 

from first principles. (c) Experimentally measured values of phonon modes 

(scattered points) of TaP along high-symmetry line Z-Γ-Σ taken by inelastic x-

ray and neutron scattering with accompanying ab initio calculation (solid lines), 

displaying good agreement between ab initio calculations and experiment. (d) 

The electronic contribution of the thermal conductivity as a function of 

temperature at various fields. (d) The Lorenz number as a function of 

temperature at various fields. The black line indicates the theoretical value of 

the Wiedemann-Franz law. 
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I. High-quality Single-crystal Growth  

We successfully obtained centimeter-sized single crystals of TaP using the vapor 

transport method described in the “Methods” section of the main text. A typical crystal 

is shown in Figure S1. 

 

Figure S1. Single crystals of TaP grown by the vapor transport method. 

II. Sample Preparation for Measurements 
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As introduced in the “Methods” section of the main text, to conduct high-precision 

measurement of electrical and thermal conductivity on TaP, we performed a thinning-

down process on the crystals. Figure S2 displays the thinned-down crystal we used for 

the thermoelectric measurement. Its thickness is only 0.17mm. 

Figure S2. Top and side view of the thinned-down sample we used for the thermoelectric 

measurement. 

III. Carrier Concentration and Mobility 

To experimentally validate the prediction of a quantized thermoelectric Hall effect 

requires information about the carrier concentration and mobility. To extract this 

information, we carried out a delicate electrical transport measurement with the 

electrical transport option (ETO) of the physical property measurement system (PPMS). 

The measurement was done using a standard six-probe geometry, schematically shown 

in Figure S3a. With the symmetric probe configuration, the measured longitudinal 

resistivity ρxx is symmetric with respect to the applied magnetic field, while the 

transverse resistivity ρxy is antisymmetric, as shown in Figure S3b and c. In both ρxx and 

ρxy, strong Shubnikov-de Haas (SdH) oscillations can be observed at low temperatures. 

The oscillation is preserved up to 25K, indicating high quality crystallization in our 
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sample, as the temperature damping effect would otherwise eliminate the quantum 

oscillation at this relatively high temperature.  

Because the contacts on the sample were made manually with silver epoxy, the 

measured data exhibit slight asymmetry due to slight misalignment of the contacts. To 

eliminate the effect of the contact misalignment, we averaged the ρxx and ρxy using the 

equations listed below:  

 

( ) ( )( ) ( )
,   

2 2

xy xyxx xx
xx xy

B BB B   
 

    
  . (S1) 

Then we calculated the longitudinal and transverse conductivities σxx and σxy using the 

following equations: 

 2 2 2 2
,   

xyxx
xx xy

xx xy xx xy


 

   
  

 
. (S2) 

The field dependence of σxx and σxy at various temperatures is shown in Figure S3d and 

e. To extract the carrier concentration and mobility, we simultaneously fit the σxx and 

σxy data as functions of B using a two-band model defined by: 
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, (S3) 

where 𝑛𝑒  and 𝑛ℎ  denote the electron and hole carrier densities, 𝜇𝑒  and 𝜇ℎ  are the 

corresponding mobilities, and 𝑒  is the elementary charge. We thereby extract the 

electron and hole carrier densities and mobilities as functions of temperature, as shown 
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in Figure S3f and g. The electron and hole concentrations are nearly compensated at low 

temperatures. This proves the origin of the giant magnetoresistance. 

 

Figure S3. (a) Schematic diagram of the electrical transport measurement in the six-probe 

geometry. Longitudinal and transverse resistivities and conductivities (b) ρxx, (c) ρxy, (d) σxx and 

(e) σxy as functions of magnetic field at different temperatures. (f) Carrier concentration and (g) 

mobility of electrons and holes resulting from the two-band model fitting. 

IV. Landau Level and Quantum Limit 

The quantized thermoelectric Hall effect considered in this work is theoretically 

predicted to exist in the quantum limit of Dirac/Weyl semimetalsS1,S2. Therefore, to 

examine the validity of the theoretical prediction, we first verify that the quantum limit 

condition is satisfied by Weyl fermions in our TaP sample. To do this, we performed a 

thorough analysis of the quantum oscillations observed in the electrical transport 

measurement, as shown in Figure 1 in the main text. The quantum oscillation data 

shown in Figure 1d of the main text was obtained by subtracting a smooth background 

from the magnetoresistance (MR) data, Figure 1c, where ΔMR is defined according to: 
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( ) ( 0T)
100%

( 0T)
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B B
MR
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 
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
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From the fast Fourier transform (FFT) analysis depicted in Figure 1e, we determine that 

the quantum oscillations in our sample are dominated by two oscillation frequencies: 

one at 4T and the other at 18T (named Fα and Fβ, respectively). After performing a 

standard signal filtering process by taking the inverse FFT of a narrow window around 

the 4T and 18T frequencies individually, we isolate the two oscillation components 

from the pristine data and determine the corresponding Landau levels (LL) by assigning 

an integer (half-integer) value to the oscillation maxima (minima), as shown in Figure 

1f. From the LL index fan, we conclude that in our TaP sample, the α Fermi pocket 

corresponding to the 4T frequency is in the n=0 LL at our maximum field of B=9T, 

whereas the β Fermi pocket corresponding to the 18T frequency is in the n=2 LL. 

Specifically, the α Fermi pocket enters the quantum limit (lowest LL) approximately at 

3.8T, and the β Fermi pocket will reach the quantum limit at an approximate field of 

16T. The linear fitting of the LL index as a function of 1/B yields intercepts of -0.037 

and 0.065 for α and β, respectively. Both are in the range of -1/8 to 1/8, proving the 

bands in the α and β Fermi pockets are topologically non-trivial and thus Weyl cones 

are presentS3. From this, we can further conclude that the Weyl Fermions in the smallest 

Fermi pocket of TaP are well within the quantum limit at our maximum applied field, 

whereas the Weyl fermions in the second smallest Fermi pocket are nearing the onset of 

the quantum limit. 

V. Data Analysis for Thermoelectric Measurement 
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Figure S4a schematically shows the principle behind the thermal transport measurement 

in the diagonal offset probe geometry. Using the thermal transport option (TTO) of the 

PPMS, the heater on the left end of the thinned-down crystal and heat sink on the right 

establish  a continuous heat flow along the a or b axis (a and b are equivalent for this 

tetragonal system), as shown in Figure S2. The thermal conductivity is directly 

calculated by the PPMS using the applied heater power, the resulting temperature 

difference ΔT detected between the two thermometers, and the sample dimension. The 

voltage drop V  between the two thermometers is monitored simultaneously, which 

yields the Seebeck signals by calculation of -
V

T




. A magnetic field was applied along 

the c axis for detecting the proposed quantized thermoelectric Hall effect. Figure S4b 

shows the temperature dependence of thermal conductivity of TaP at 9T and -9T. From 

this plot, we note that the thermal conductivities at positive and negative magnetic fields 

have a very slight difference. This indicates that the thermoelectric Hall effect (the 

transverse movement of thermal electrons in the presence of a magnetic field) provides 

a negligible but observable heat flow along the transverse direction. To extract the 

longitudinal thermal conductivity from the measured thermal conductivity, we use the 

following equations: 

 , ,

( ) ( ) ( ) ( )
,   

2 ( ) ( ) 2 ( ) ( )
th xx th xy

B B B B L

B B B B W

   
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and  
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where L and W represent the length-wise and the width-wise separation between the two 

thermometers. Figure S4c displays the obtained longitudinal thermal conductivity κxx as 

a function of temperature at different magnetic fields. From the inset of Figure S4c, we 

see that the applied magnetic field gradually suppresses the longitudinal thermal 

conductivity. This phenomenon is consistent with the giant magnetoresistance, as both 

originate from the greatly elevated electron scattering induced by the magnetic field. 

The magnitude of the thermal conductivity of TaP is very large compared to most 

materials, which explains the importance of thinning the sample prior to measurement. 

The Seebeck signals at 0T, 9T and -9T are plotted in Figure S4d, from which giant 

magnetic field-induced Seebeck signals can be observed at 9T and -9T. The data for 9T 

and -9T are asymmetrical due to the mutual presence of longitudinal and transverse 

Seebeck signals. We use the following equations to calculate the longitudinal and 

transverse Seebeck coefficients Sxx and Sxy: 

 
meas meas meas meas( ) ( ) ( ) ( )

,   
2 2

xx xy

S B S B S B S B L
S S

W

     
   . (S7) 

The temperature dependence of Sxx and Sxy collected at different magnetic fields is 

presented in Figure S4e and f. It is obvious that the applied magnetic fields induce giant 

Seebeck coefficients along both longitudinal and transverse directions. The longitudinal 

Seebeck coefficient Sxx does not appear to saturate with increasing field up to the 

highest measured field of 9T. By contrast, Sxy tends to saturate at high magnetic fields. 

Another novel behavior in Sxx and Sxy is the presence of a double-peak feature around 

T=40K. We provide a clear explanation of this feature in the main text. 
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Figure S4. (a) Schematic diagram of the thermal transport measurement. (b) Thermal 

conductivities of TaP at 9T and -9T. (c) Longitudinal thermal conductivity of TaP as a function 

of temperature at various fields. (d) Measured Seebeck signals at 0T, 9T and -9T for the 

diagonal offset probe geometry. (e) Longitudinal and (f) transverse Seebeck coefficients Sxx and 

Sxy as functions of temperature at different magnetic fields.  

 

After performing the thermal transport measurement at a certain temperature, a 

subsequent electrical transport measurement at the same temperature is made in the 

TTO. The inset of Figure S5a shows the schematic diagram for the electrical transport 

measurement in the diagonal offset geometry. In the presence of a magnetic field, the 

system applies an electrical current along the a or b axis, and the voltmeter between the 

diagonal offset probes detects the voltage drop which contains both longitudinal and 

transverse components. The longitudinal resistivity ρxx and the transverse resistivity 

(also called Hall resistivity) ρxy are separated using the following equations: 
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xx xy
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 
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Figure S5a displays the measured resistivity at 0T, 9T and -9T. The disagreement 

between the 9T and -9T data is evidence of the mutual presence of the longitudinal and 

transverse resistivities ρxx and ρxy. After separating ρxx and ρxy using Eq. (S8), as shown 

in Figure S5b and c, we then calculated zT according to: 

2

xx

xx xx

S T
zT

 
 . (S9) 

From the plot of zT in Figure S5d, we note that, although the power factor (shown in 

Figure 2f in the main text) is record-breaking in magnitude, the zT does not attain a very 

high value due to the significant thermal conductivity.  

It should be noted that the giant magnetic field-induced Seebeck coefficients cannot be 

observed in the case of B∥a∥jQ, which is evidenced by comparison of two geometries in 

Figure S5e and f. This indicates that the giant magnetic field-induced longitudinal and 

transverse Seebeck coefficients in the case of B∥c⊥jQ originate from the quantized 

protection of the thermoelectric Hall Effect. 



Page 11 of 18 

 

Figure S5. (a) Measured resistivities of TaP at 0T, 9T and -9T for the diagonal offset probe 

geometry. Inset: Schematic diagram of the electrical transport measurement. Longitudinal and 

transverse resistivities (c) ρxx, (d) ρxy as functions of temperature at different magnetic fields. 

Comparison of the B∥a∥jQ and B∥c⊥jQ geometries for (f) Sxx and (g) MR. The giant Seebeck 

coefficients were not observed in the B∥a∥jQ case. 

VI. Thermoelectric Hall Conductivity  

To validate the quantized thermoelectric Hall effect, particularly the quantized plateau 

of the thermoelectric Hall coefficient αxy in the high magnetic field limit, we calculated 

αxy using the following equation: 

 2 2

xy xx xx xy

xy

xx xy

S S 


 





. (S10) 

To obtain αxy as a function of magnetic field for different temperatures, we replotted Sxx 

and Sxy from Figure S4e and f, and ρxx and ρxy from Figure S5b and c, as functions of 

magnetic field, as shown in Figures 2d and 3a in the main text and S6a and b here. The 

resulting αxy calculated with Eq. (S10) is displayed in Figure 3b in the main text.  
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To extract the values of effective Fermi velocity  eff

Fv and chemical potential 𝜇, as well 

as identify the quantized value of  /xy T  approached at very large fields, we fit our 

low-temperature xy  data up to T=10K using the general expression of xy  in the 

dissipationless limit S2 (Eq. (3) of the main text): 
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where 𝑁𝑓  equals the number of Weyl points, and 0 ( )n zk denote the Landau level 

energies: 

 
0 2 2( ) sgn(n) 2n z zFk e Bv n k   . (S12) 

and Fv  is treated as
eff

Fv . The function 𝑠(𝑥) is the entropy per carrier, given by  

    ( ) ( ) ln ( ) 1 ( ) ln 1 ( )B F F F Fs x k n x n x n x n x       . (S13) 

where 
1

( )
1

F x
n x

e



is the Fermi-Dirac distribution. The fit using Eq. (S11) is shown 

in Figure S6c, and we extrapolate the fitted function to even larger magnetic fields, 

revealing we are near the onset of the quantized limit, shown in the inset. The value of  

/xy T approached in this limit is ~0.6 AK−2m−1. The corresponding fitted parameters 

are given in Figure S6d and e, and in Figure 3e of the main text. 

To verify this fit, we additionally fit our low-temperature data using the expression for  

/xy T which also includes a finite scattering time 𝜏 and is thus a more expressive form 

for data with weak scattering present S2: 
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where the cyclotron frequency 𝜔𝑐 is given by 

 

2

( ) F
c

eBv
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
 . (S15) 

and once again and Fv  is treated as 
eff

Fv . This fit is shown in Figure S6f with the 

corresponding fitted parameters shown in Figure S6g and h, which are in good 

agreement with those of the previous fit. 

Similarly, we fit our high-temperature data in the limit of weak scattering using 
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which is shown in Figure S6i with corresponding fitted parameters in S6j and k. 

 

Figure S6. Longitudinal and transverse resistivities (a) ρxx and (b) ρxy as functions of 

magnetic field at different temperatures. (c) Thermoelectric Hall coefficient αxy as a 
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function of magnetic field at different temperatures. Fitted curves of Eqn. S11 (low-

temperature dissipationless limit) are shown as solid lines. (d-e) Effective Fermi 

velocity and chemical potential parameters obtained from the fit in (c). (d) Fitting with 

Eqn. S14 and corresponding fitted parameters (e-f). (i) Fitting with Eqn. S16 (high-

temperature limit with weak scattering) and corresponding fitted parameters (j-k). 

VII. Consistency of Charge Neutrality 

Our results from different measurements show a high level of consistency with one 

another. Taking charge neutrality as an example, we observe excellent agreement 

between the temperatures of the charge neutral point in the carrier concentration data 

and in the Seebeck coefficient data. In the plot of the carrier concentrations of electrons 

and holes as functions of temperature (the top panel of Figure S7) the electron and hole 

concentrations become equal at around 100K while the Seebeck coefficient at 0T 

changes its sign at around 75K, as shown in the bottom panel of Figure S7. 
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Figure S7. Consistency of the charge neutral point in carrier concentration and Seebeck 

coefficient. 

VIII.  X-Ray and Neutron Scattering Measurement Details 

Measurements of the phonon modes along high-symmetry lines in the Brillouin zone of 

TaP were performed using both inelastic x-ray scattering and inelastic neutron 

scattering. Selected raw intensity spectra along high symmetry direction Γ to Σ are 

shown in Figure S8 using x-rays (left) and neutrons (right). The spectra were analyzed 

by a damped harmonic oscillator (DHO) model convoluted with the experimental 

resolution function to yield the energy and intensity of each mode. These were used to 

generate a phonon dispersion relation, which can be seen in Figure 4c in the main text, 

along high symmetry line Ζ-Γ-Σ. These experimental results serve as a consistency 

check to support the ab initio calculations performed for the thermal conductivity used 

in the main text and displayed in Figure 4b. 
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Figure S8. X-ray (left panel) and neutron (right panel) inelastic scattering 

measurements along the high symmetry direction Γ-Σ. The faint solid lines are a guide 

for the eye. 

 

IX. Separation of Phonon and Electron Contributions to Thermal Conductivity 

To check the compliance or violation of the Wiedemann-Franz law, the phononic and 

electronic contributions to thermal conductivity need to be separated.  

To separate the phononic and electronic contributions, we fit κxx versus B curves with 

the following empirical equation: 
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. (S17) 

where βe(T) is proportional to the zero-field electronic mean free path of electrons, and 

m is related to the nature of the electron scatteringS4, S5, S6. 

Figures S9b-d shows the gradual suppression of κxx at high magnetic fields at typical 

temperatures 100K, 200K and 300K. We can see at 100K, κxx forms a plateau above 4T, 

indicating that the electronic thermal conductivity is almost completely suppressed, 

while at 200K and 300K, the suppression is still in an intermediate state. All the κxx 

versus B curves can be fitted well with Eq. (S17) and the fitting process for different 

temperatures successfully achieves the separation of the phononic and electronic 

contributions to thermal conductivity. The resulting phononic and electronic thermal 

conductivities are discussed in detail in the main text. Here we stress that the fitting 

parameter βe(T) obtained from the fitting shows a typical behavior of thermally elevated 

electron-phonon scattering, as shown in Figure S9a, and the fitting parameter n 
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fluctuates around 1.35, indicating its constant nature which implies that our fitting 

process is reasonable. 

 

Figure S9. (a) The fitting parameter βe(T) as a function of temperature. The fitting for 

the κxx versus B curves at (b) 100K, (c) 200K and (d) 300K.  
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