
PERSPECTIVE
https://doi.org/10.1038/s41928-021-00646-1

1John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. 2Samsung Advanced Institute of Technology, 
Samsung Electronics, Suwon, Republic of Korea. 3Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. 4Department 
of Physics, Harvard University, Cambridge, MA, USA. 5Samsung Electronics, Hwaseong, Republic of Korea. ᅒe-mail: donhee@seas.harvard.edu;  
Hongkun_Park@harvard.edu; swnano.hwang@samsung.com; kn_kim@samsung.com

Neuromorphic engineering began in the 1980s with the aim 
of using analogue integrated circuits to mimic the structure 
and function of neuronal networks in biological nervous 

systems1,2. The ultimate goal was to bring the remarkable comput-
ing abilities of the brain to a solid-state platform. However, rigor-
ous mimicry of the brain’s neuronal network has proved difficult, 
because we still do not know today how a large number of neurons 
wire inside the brain to create higher functions. As a result, the 
aims of neuromorphic engineering have been eased to include the 
development of designs inspired by qualitative features of the brain, 
including asynchronous, event-driven operation3–6 and in-memory 
information processing6–17. The analogue design requirement has 
also been relaxed to mixed-signal design, leading to the creation of 
a range of sophisticated analogue and digital circuits1–22.

In this Perspective, we explore the possibilities and limitations 
of these current approaches to neuromorphic engineering, and 
then provide a vision for neuromorphic electronics that returns the 
field to its original goal—reverse engineering the brain—through 
a combination of advanced neuroscience tools and state-of-the-art 
memory technology. The essence of our approach is to copy the 
functional synaptic connectivity map of a mammalian neuronal 
network using an intracellular neuro-electronic interface23 and to 
paste this map to silicon integrated circuits including a high-density 
three-dimensional (3D) network of memories24. We also consider 
the key challenges involved in using this copy-and-paste strategy to 
develop silicon integrated circuits that can approximate the com-
puting abilities—and ultimately the intelligence—of the brain.

Contemporary neuromorphic approaches
Current neuromorphic electronics generally fall into two catego-
ries: approaches motivated by artificial neural networks (ANNs) 
and approaches motivated by the brain’s natural neuronal network 
(NNN) (Fig. 1). ANNs are the framework of machine learning and 
have led to a range of powerful artificial intelligence (AI) applica-
tions25, and are of particular use in feature classification from big 
data. The ANN demands brute and precision calculations, and is 

thus best realized digitally, such as with central, graphics or neural 
processing units26. NNNs are the basis of natural intelligence and 
are powered by electrochemical reactions. They excel at different 
tasks to ANNs: they can learn easily from few or poorly conditioned 
data, can adapt to environments, are autonomous and are capable of 
cognition. These differences suggest that the organizing principles 
of the NNN, of which we still know little, are profoundly different 
from those of the ANN.

The NNN and neuromorphic engineering. Neuromorphic engi-
neering was originally aimed at creating analogue integrated cir-
cuits based on the NNN organizing principle to emulate the brain’s 
remarkable functions1,2 (Fig. 1, Analogue mimicry). A family of 
silicon neuron circuits was developed to imitate the firing of action 
potentials (APs)—spikes—in biological neurons, with varying 
degrees of abstraction of the ion channel dynamics that underlie 
the AP firing18,19. These spiking silicon neurons were then con-
nected through silicon synapse circuits, with synaptic integration 
also modelled in such connections19. Various AP firing patterns20 
and signal processing models21 were obtained by networking silicon 
neurons and synapses.

Key advances were made in emulating the sensory peripherals 
of the brain, and in particular the retina. The structure and func-
tion of the biological retina’s NNN were modelled, at least par-
tially, on a silicon chip to approximate early visual processing3,22. 
Neuromorphic vision was further advanced to the event cam-
era3 that combines the silicon retina and spiking silicon neurons 
(in practice, there are different styles of realization4,5). Each pixel 
responds with a spike only when an event occurs: for example, when 
light intensity to the pixel changes due to motion. Each pixel thus 
outputs an asynchronous stream of spikes. Contrasting the standard 
frame-based, clock-driven complementary metal–oxide–semi-
conductor (CMOS) image sensor, this asynchronous event-driven 
vision can track motions with a time resolution of microsec-
onds, and can be useful for applications in autopilot systems and  
robotics. It is now typically realized in mixed-signal mode, which 
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highlights the fact that neuromorphic electronics is no longer 
restricted to the analogue domain3–5. These advances in neuromor-
phic vision were possible due to the wealth of knowledge on the reti-
nal NNN, while its embodiment of the asynchronous, event-driven 
operation is inspired by the NNN (that is, biological neurons 
respond only when necessary).

In contrast, because little is known about how neurons wire 
inside the brain (the cortex, for example) to create higher function, 
building a circuit that exhibits the unique computing abilities—and 
ultimately autonomy and cognition—of the NNN is fundamentally 
challenged, and a silicon chip that offers brain-like intelligence 
remains a distant prospect. Asynchronous, event-driven opera-
tion is an insightful clue to the NNN and can enable bio-inspired 
designs, but it cannot instruct us on how to wire a massive num-
ber of silicon neurons into a system that can compute similarly to 
the brain. Reproducing higher brain functions requires the NNN’s 
functional wiring diagram, or functional connectivity map.

The ANN and neuromorphic engineering. The past decade has 
seen a sharp resurgence in neuromorphic engineering. This is 
driven by the AI boom, and represents another style of neuromor-
phic electronics trying to build an analogue-aided ANN processor 
(Fig. 1, Analogue aided) that consumes far less power in AI com-
puting than fully digital ANN processors (Fig. 1, Fully digital)7–17. 
While this approach does not aim to reproduce the unique traits of 
natural intelligence via rigorous NNN mimicry, it is still regarded by 
many as neuromorphic electronics because its design is inspired by 
the in-memory computing attribute of the brain.

The backbone of this analogue-aided ANN is a crossbar array of 
conductive memories (resistive memories, for example) that per-
forms multiply–accumulate operations—the most prevalent ANN 
algebra—in a physical manner7–17. Each memory stores an ANN 
optimization parameter (weight) as its conductance value. Input 
voltages fed to the rows of the array are multiplied by the weights 
via Ohm’s law, and the resulting currents are accumulated in each 
column by Kirchhoff ’s law. This physical, and thus analogue, mul-
tiply–accumulate operation burns far less power than its digital 
counterpart. Here the colocalization of memory and computing in 

the crossbar array, which breaks away from the von Neumann para-
digm, is inspired by the brain, where memory elements (biological 
synapses) are distributed across the network. The goal here, how-
ever, is to calculate the ANN algorithm, not to mimic the NNN to 
create the unique functions of the brain.

The considerable power reduction possible with the 
analogue-aided ANN has generated substantial interest7–17. This 
enthusiasm, however, must be balanced with the fact that the 
analogue-aided ANN borrows error-bound analogue methods to 
solve the precision ANN algorithm, trading accuracy for power sav-
ings. Consequently, the technology can be powerful for applications 
that demand low power but can afford reduced accuracy. A case in 
point is the always-on wake-up sensors in edge devices, which need 
not resolve fine features but must consume as little energy as pos-
sible. The technology thus has the potential to penetrate the large 
AI sensor market.

Other bio-inspired features beyond in-memory computing, such 
as asynchronous multiply–accumulate operations in the event- or 
data-driven manner6 and unsupervised learning27,28, have also been 
brought to the crossbar array. Nevertheless, the goal has remained 
the ANN calculation for AI applications, and not the rigorous mim-
icry of the NNN structure and function to emulate the unique traits 
of natural intelligence.

Copying the NNN
The original neuromorphic pursuit to mimic the NNN has been 
limited by the lack of the NNN’s functional wiring diagram. As a 
result, the focus of the field has evolved from rigorous brain mim-
icry to design inspired by qualitative features of the brain such as 
asynchronous, event-driven operation and in-memory comput-
ing. Our aim is to turn back to the original idea of brain mimicry 
by leveraging recent advances in neuroscience tools, in particular, 
a silicon neuro-electronic interface23 called the CMOS nanoelec-
trode array (CNEA). The CNEA can ‘copy’ the NNN’s functional 
synaptic connectivity map (Fig. 2) through its massively parallel 
intracellular electrophysiological recording. Over the past decades, 
non-electrophysiological methods29–31, such as optical and electron 
microscopy, genetically encoded indicators and a host of other 
experimental methods, have also made spectacular progress in 
deciphering anatomical and functional connections in the NNN. 
For instance, electron microscopy was used to obtain the anatomi-
cal map of the full nervous system of Caenorhabditis elegans in the 
mid-1980s32 and has since been applied to various animal brains, 
culminating in the recent anatomical mapping of the complete 
Drosophila brain33. We, however, will focus mostly on the electro-
physiological method, because it is a natural fit to the solid-state 
memory network to which the copied biological neuronal networks 
will be ‘pasted’.

Parallelization of intracellular recording has been an impor-
tant pursuit in neuroscience, because it would enable the func-
tional synaptic connectivity mapping of the NNN34–37. The Nobel 
Prize-winning patch clamp electrode revolutionized neurobiology 
with its highly sensitive intracellular recording: it can measure not 
only APs but also subthreshold signals such as postsynaptic poten-
tials (PSPs), and thus can find a synapse and measure its connection 
strength. However, because the bulky patch clamp cannot scale to a 
dense array, parallel patch recording has been limited to only about 
ten neurons38, making it difficult to map a network-wide synaptic 
connectivity. Conversely, the microelectrode array records from 
many more neurons to monitor a network, but this extracellular 
method is not sensitive enough to record PSPs, making it difficult 
to study synaptic connections39,40. The CNEA—the latest version of 
which integrates 4,096 electronic channels in a CMOS chip with 
4,096 vertical nanoelectrodes (Fig. 2a)—joins intracellular and par-
allel recording23, and thus it can map the NNN’s functional synaptic 
connectivity (Fig. 2b).
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Fig. 1 | Contemporary neuromorphic research. Current neuromorphic 
electronics research may be categorized into the effort motivated by the 
NNN and that by the ANN. CPU, central processing unit; GPU, graphics 
processing unit; NPU, neural processing unit; TPU, tensor processing unit; 
V, voltage; I, current; G, memory conductance.
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Machinery of the CNEA. Each channel of the CNEA features a ver-
tical nanoelectrode on the surface and can be configured to have a 
current injector and a voltage amplifier in the underlying CMOS chip 

(Fig. 2c)23,41. A neuron can wrap around the nanoelectrode. A cur-
rent injection by the underlying electronics then permeabilizes the 
membrane around the electrode, giving the electrode intracellular 
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Fig. 2 | Copying the NNN. a, A CNEA23. b, Rat neurons on CNEAs (left) and synaptic connectivity map (right) extracted from network-wide intracellular 
recording data obtained by the CNEA. c, Intracellular recording at a CNEA channel is enabled by injecting a current Ie into the electrode and by 
concurrently recording the electrode voltage Ve, which is a scaled version of the membrane potential. Each recorded voltage shown here and in d and e is 
Ve. Ve serves as an input to the amplifier, whose output voltage is Vamp. d, Intracellular recording from a pair of connected neurons. APs of the presynaptic 
neuron and PSPs of the postsynaptic neuron are time correlated. When APs fire rapidly in the first neuron, synaptic integration occurs in the second neuron 
(bottom). e, In another pair, a histogram of 149 PSP amplitudes of the postsynaptic neuron shows quantization. Panels adapted with permission from:  
a, refs. 23,42, Springer Nature Ltd; b–e, ref. 23, Springer Nature Ltd.
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access (Fig. 2c). After this intracellular access is achieved, the cur-
rent injection is sustained to compensate permeabilization-caused 
leakage from the neuron, stabilizing the cell’s electrophysiology. 
Concurrently, the voltage amplifier measures the membrane poten-
tial. With this current injection with simultaneous voltage recording, 
or current clamp, the CNEA channel achieves a robust intracellular 
recording of not only APs but also PSPs on a routine basis.

Figure 2c shows an example recording of a rat cortical neuron at 
a CNEA channel. With no current injection, small and noisy extra-
cellular signals register. With the current injection that causes intra-
cellular access, the measured signal increases markedly, enabling 
definitive measurements of PSPs, as in the patch clamp (before this 
CNEA, intracellular access into a neuron using a nanoelectrode was 
difficult42, and even when successful43 PSPs could not be measured, 
due to the lack of integrated current-clamp electronics). What dis-
tinguishes the CNEA from the patch clamp is the scalability: the 
CNEA parallelizes the high-fidelity intracellular recording with its 
dense channels and can perform network-wide intracellular record-
ing. For example, during a 19 min recording from a network of rat 
cortical neurons cultured on top in vitro, the 4,096-channel CNEA 
measured intracellular signals from 1,728 electrodes23, a substantial 
leap from roughly ten patch recordings. This number can easily be 
further increased, as scalability—making a larger, denser CNEA—is 
the essence of CMOS technology.

Copying the functional synaptic connectivity map. In a pair of 
neurons connected by a chemical synapse, an AP from the pre-
synaptic neuron elicits a time-correlated PSP in the postsynaptic 
neuron. Synaptic connections can thus be found by identifying 
time-correlated APs and PSPs in the network-wide intracellular 
recording data. Figure 2d shows an example neuronal pair thus 
found. This connection is further confirmed by the synaptic inte-
gration from the same data: when the presynaptic neuron fires a 
rapid sequence of APs, the resulting PSPs in the postsynaptic neu-
ron summate to exceed the threshold, resulting in an AP in the 
postsynaptic neuron (Fig. 2d, bottom). By searching AP–PSP corre-
lations in the 1,728 intracellular signals from the 19 min recording, 
we mapped 304 excitatory and inhibitory synaptic connections23 
(Fig. 2b), a scale and throughput unimagined with the patch clamp. 
The power of the intracellular recording to measure PSPs can be 
appreciated from the fact that the correlation analysis of presynaptic 
APs and postsynaptic APs (in lieu of PSPs) from the same dataset 

uncovers only 63 connections. This is because synaptic integration 
in a weak or inhibitory connection may not exceed the threshold, 
with the postsynaptic neuron not firing APs.

Not only can the CNEA’s intracellular recording distinguish 
excitatory and inhibitory PSPs, but also it can resolve the PSP ampli-
tude down to a unit quantum (Fig. 2e)23: the PSP quantization is 
a hallmark of the chemical synapse, where neurotransmitters are 
released in a discrete number of vesicles. This high-resolution PSP 
amplitude measurement, previously only possible using the patch 
clamp, can assign the strength to each synaptic connection, inform-
ing not only anatomy but also function.

In sum, we can extract the functional synaptic connectivity 
map from the network-wide intracellular recording data. The net-
work intracellular recording can then be considered as the process 
of copying the functional synaptic connectivity map. The record-
ing also provides other critical information, such as propagation 
delays in neuronal axons, feedback routings through neurons and 
ion channel properties in neuronal membranes. The last informa-
tion on this list is obtained by engaging the CNEA recording in the 
voltage-clamp mode (voltage application with simultaneous current 
recording)23.

Working with a behavioural neuronal network. The current 
version of CNEA determined a synaptic connectivity map from 
in vitro cultured neurons. These neurons are live, connected and 
firing, but their random network does not give biological behav-
iour. The advance we have made thus far is hence a relatively small 
step towards the ultimate goal of copying neuronal networks from 
within the brain. Towards this goal, the nanoelectrodes should take 
different form factors to access 3D neuronal networks found in the 
brain, such as nanoelectrodes with long pillar geometry or placed 
at each pixel on a macroscopic shank44. To start, we are interrogat-
ing the neurons’ functional connectivity in mouse retina and olfac-
tory bulb/piriform cortex. These are attractive initial targets as they 
have clear functions, their inputs can be easily controlled and there 
are well-established protocols for preparing ex vivo samples. At the 
same time, they are different in terms of their neuronal organiza-
tions: in the retina, cells are arranged into regular lamina45; in the 
olfactory bulb/piriform cortex, such neat organization is absent46. 
As such, these studies will serve as a steppingstone to applying the 
CNEA to more complicated neuronal circuits in other brain regions 
and, ultimately, to probe cortex regions.

Fig. 3 | Pasting. a, A functional synaptic connectivity map extracted by the computer-aided analysis of N intracellular recordings can be used to synthesize 
a memory network (left) with ~1,000N memories. Alternatively, we can drive an N!×!N memory crossbar array with N2 cross-point memories directly 
with the recorded signals for physical imprinting of the functional connectivity map (right). b, STDP. Δ, time delay between the two signals driving 
the two terminals of the RRAM; t, time. c,d, Illustration of STDP-based physical imprinting of the functional synaptic connectivity map, using an NNN 
toy model with four biological neurons and a 4!×!4 RRAM crossbar array. Neuron 1 (N1) synapses N2 strongly and N3 synapses N4 weakly, so in their 
recording (c, top) APs in N1 cause strong PSPs in N2, and APs in N3 induce weak PSPs in N4. We perform two rounds of driving of the crossbar array. 
The first round is to impress connections, but not their strengths. We precondition the recorded signals by converting PSPs into spikes at the same 
time positions (c, middle), which can be done by an analogue circuit, and feed these signals to both columns and rows of the crossbar array. As APs 
of N1 and PSPs-turned-spikes of N2 are time correlated, the RRAM at the intersection between the N1 row and N2 column, or at (1, 2), will increase its 
conductance (the amount of increase does not matter in this round) due to STDP (d, left). The same holds true for the RRAM at (3, 4) (d, left). Because 
STDP is sensitive to the sign of the time delay, RRAMs at (2, 1) and (4, 3) will decrease their conductance (d, left). At all other cross points driven by 
signals with no time correlations, STDP averages out the driving to cause no conductance change (d, left). Together, these conductance changes across 
the array (d, left) indicate that N1 synapses N2 and N3 synapses N4. The second round, performed after the memory reset, is to impress the strength on 
each connection identified in the first round. We precondition the recorded signals in such a way that the larger PSP of N2 is again converted to a spike 
but with a time shift to have a shorter time delay from the AP of N1 (we can do this because we know the N1–N2 connection from the first round; this 
amplitude-to-time conversion can be done with an analogue circuit), and the smaller PSP of N4 is converted to a spike with another time shift to have a 
longer time delay from the AP of N3 (c, bottom). As these signals drive the array, the conductance values of the RRAMs at (1, 2) and (3, 4) will increase, 
with the former being larger, due to STDP (d, right), thus correctly imprinting the connection strengths. RRAMs at (2, 1) and (4, 3) show symmetric 
behaviours. We ignore all the other cross-points with no synaptic connections. These two rounds conclude the physical imprinting of the functional 
synaptic connectivity map. Δ, time delay between each AP in N1 and the resulting PSP in N2; Δ′, time delay between each AP in N3 and the resulting PSP in 
N4; A, voltage amplitude of the PSPs in N2; A′, voltage amplitude of the PSPs in N4. Panel a adapted with permission from ref. 23, Springer Nature Ltd.
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Pasting
The functional synaptic connectivity map extracted from the 
intracellular recording of N neurons can be pasted to a network of 
conductive memories (Fig. 3a), with each memory storing a con-
ductance value that represents the strength of a corresponding 
biological synaptic connection. This memory network can then be 
weaved together with silicon neurons to reflect propagation delays, 
feedback routings and ion channels, which are also extracted from 
the recording data.

Memory candidates. While dynamic random access memory 
(DRAM) and flash memory are the pillars of memory technol-
ogy24, the industry has not stopped searching for ‘new memories’—
new in potential applications, not in concept—to complement fast 
but volatile DRAM and non-volatile but slow flash. Spin-transfer 
torque (STT) magnetic random access memory (MRAM)47, phase 
change random access memory (PRAM)48 and resistive ran-
dom access memory (RRAM)7,13,49–52 are promising examples. Of 
these commercial and new memories, flash, MRAM, PRAM and 
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RRAM—which are non-volatile, conductive memories and can be 
embedded in CMOS processes with read–write electronics—are 
well suited for the paste platform. Not all of them are yet ready 
for widespread adoption due to reliability issues, but the vision we 
present here is also for the future. Each of the four memory types 
has its own strengths.

Flash memory is a field-effect transistor with a floating gate 
that can trap different amounts of charge to give a range of chan-
nel conductance values. It is an attractive paste platform due to 
its ultrahigh-density 3D integration53 and multi-level-cell (MLC) 
operation that can approximate the real-valued connection 

strength. It has a limited endurance and requires a high writing 
voltage due to moving electrons to and from the floating gate 
through a dielectric.

The STT-MRAM47 consists of two ferromagnetic films separated 
by a thin oxide and is manipulated by a current to align or anti-align 
the magnetic moments of the two magnetic layers, creating low- and 
high-resistance states. It is thus a one-bit cell. Regarded as the pos-
sible alternative to DRAM in speed and endurance, this technology 
has advanced notably in recent years. For the paste work, several 
one-bit cells must combine to create an effective MLC, compromis-
ing the area density.
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In the PRAM48, a chalcogenide layer is electrically switched 
between a conductive crystalline phase and a resistive amorphous 
phase. It is also a mature technology: Samsung volume-produced 
512 Mb PRAMs around a decade ago, supplanting NOR flash for 
mobile devices. Capable of attaining multiple intermediary resis-
tance states, the PRAM can be an MLC, although resistance drift is 
a practical obstacle for MLC operation.

In the RRAM7,13,49–52, a metal oxide or solid electrolytic medium 
lies between electrodes. Movement of ions (oxygen vacancies or 
metal ions, for example) through the medium causes a resistive 
switching, with MLC operation possible if properly designed. 
Due to its simple and small structure, it has attracted a great 
renewed interest, although device variability currently precludes  
widespread adoption.

Remarkably, RRAM or PRAM can learn the time correlation of 
the signals at its two terminals: when the two signals have a stron-
ger correlation (a shorter time delay), its conductance changes more 
(Fig. 3b)28,51,52,54–57. This spike-timing-dependent plasticity (STDP), 
which is also sensitive to the sign of the time delay (Fig. 3b), can 
be exploited for the paste task, as seen later. Flash can also learn 
the time delay of two signals if both signals drive the same transis-
tor gate through a system that converts their time delay into a gate 
charging time. STT-MRAM is less suitable for plasticity engineering 
due to its one-bit nature.

Computer-aided map extraction and memory programming. 
The pasting process can start with the extraction of a functional 
synaptic connectivity map via computer-aided analysis of AP–PSP 
correlations and PSP amplitudes from the intracellular record-
ing dataset. This map can then be used to fabricate and program a 
network of memories where each memory represents the extracted 
strength of its corresponding biological synaptic connection: since 
one neuron has about ~1,000 synaptic connections in the brain, 
the map will have ~1,000N synaptic connections and the network 
will thus feature ~1,000N memories (Fig. 3a, left). From the semi-
conductor fabrication point of view, the key consideration will be 
the reduction of the production cost by designing a memory array 
platform that can be flexibly programmed to represent a variety of 
synaptic connectivity maps extracted from different NNNs. The 
memory programming itself can be done with the electronics inte-
grated in the same chip that can rapidly write and verify the network 
of memories. In the 3D flash with three-bit cells, for example, write 
and verification is done at a rate exceeding 100 MB s−1: hundreds of 
millions of connections can be programmed in 1 s. The main chal-
lenge of this paste approach is the computer-aided analysis due to 
the sheer volume and complexity of the recording data: even the 
19 min recording by the 4,096-channel CNEA produces ~80 GB 
of data, which will rapidly rise with further scaling of the CNEA. 
The extraction of the functional connectivity map from the big data 
can benefit from new approaches such as machine-learning-based 
pattern recognition and crowd sourcing58. Despite this challenge, it 
offers an exciting opportunity, because such large-scale intracellular 
recording was previously unavailable.

Physical imprinting. Alternatively, we can bypass the computer 
analysis and directly imprint the connectivity map onto an RRAM 
or PRAM network by driving it with the N recorded signals (Fig. 
3a, right). This exploits the STDP. Since we do not know the con-
nectivity map a priori in this approach, we can use an N × N cross-
bar array as the memory network, where every silicon neuron (with 
one-to-one correspondence to a biological neuron) can be con-
nected to every other silicon neuron with N2 cross-point memories 
serving as artificial synaptic connections. If we drive both N rows 
and N columns of the crossbar array with the N neuronal record-
ings, the memory at a cross-point of a presynaptic neuron and a 
postsynaptic neuron will be strengthened due to the STDP, because 

of the time correlation of the presynaptic APs and the (preampli-
fied) postsynaptic PSPs. In this way, the crossbar array will physi-
cally learn the connectivity map of the N neurons. A variant of 
this strategy can also make the crossbar array learn the strength 
of each identified connection, completing the imprinting of the 
functional connectivity map. Figure 3c,d details this STDP-based 
imprinting with an NNN toy model with four biological neurons 
and a 4 × 4 RRAM crossbar array. As mentioned earlier, the flash 
memory too can learn time correlations, so it can be used for physi-
cal imprinting in a varied form of crossbar array compatible with its 
three-terminal operation.

This physical imprinting is an elegant and powerful strategy to 
download the biological synaptic organization to the memory plat-
form, but it also entails practical challenges. First, given only ~1,000N 
actual synaptic connections, most of the N2 cross-point memories 
will be left unused. Second, RRAMs still suffer device-to-device 
variability due to the stochasticity of the ionic channel formation, 
and PRAMs the resistance drift, rendering their use as MLCs across 
a large network non-trivial. Also, their STDP studies have so far 
been largely focused on single devices rather than networks. It is 
encouraging, however, that a major advance has been made in using 
these memories in networks for AI computing7–16: although its goal 
differs from NNN mimicry, it shows improvement in engineer-
ing these memories for network usage. The mature flash memory 
may suffer less from the reliability issue when used for the physi-
cal imprinting. Third, even with an ideal memory, the imprinting 
process can be challenging due to the complex signal traffic caused 
by multi-input/multi-output connections and feedback routings 
among a large number of neurons. Tackling this problem alone 
could be a substantial research opportunity: one possibility is to 
mitigate the traffic during the recording via controlled excitation of 
the NNN23 to prepare more straightforward data for the paste task.

Neuromorphic scaling with 3D technology. The network with 
~1,000N memories pasted from the computer-extracted func-
tional synaptic connectivity map (Fig. 3a, left) would occupy a pro-
hibitively large area of ~30 × 30 cm2 for N ≈ 100 billion estimated 
for the human brain and a 30 × 30 nm2 memory cell. This can be 
tackled using 3D integration, the technology that opened a new 
era for the memory industry24. For example, a 128-layer 3D inte-
gration will reduce the area to ~26 × 26 mm2, a footprint feasible 
in the advanced technology node. The crossbar array used for the 
physical imprinting (Fig. 3a, right) presents a stiffer scaling chal-
lenge, since it has N2 memories for ~1,000N actual synaptic connec-
tions; the chip area, even after a 128-layer 3D integration, will be 
~260 × 260 m2. The crossbar array can certainly implement a smaller 
network (for N ≈ 10 million, a 128-layer integration yields a feasible 
~26 × 26 mm2), which still is a useful step. For a larger network, the 
physical imprinting platform must differ from the crossbar array. 
Designing such a platform would require some a priori knowledge 
of the map, hence mandating assistance from computer analysis of 
recording data to a certain degree.

To further appreciate the 3D technology, consider flash mem-
ory. In the face of the increasingly difficult scaling due to the 
lithographic limitation and the device physics at the reduced 
dimensions, advances have been made by using the third dimen-
sion: Samsung drove the 3D NAND flash production53 (Fig. 4a), 
first vertically stringing 32 memory cells and now 128. This 3D 
integration has markedly increased the memory density and bulk 
data transfer speed, making the vertical NAND flash an enabler of 
the big data age. Another 3D revolution is found in DRAM in the 
form of 3D packaging using through-silicon vias (TSVs) that make 
shortest-path connections between silicon dies24,59. Twelve DRAM 
dies have been stacked (Fig. 4b), increasing the memory density to 
approximately gigabytes per square millimetre and the data trans-
fer rate to hundreds of gigabytes per second, enabling high-end 
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graphics, computing and servers: TSV sizes are approaching the 
micrometre range, and thousands or more finely pitched TSVs 
are interconnected per die. If the 3D paste platform employs flash 
memory to represent the functional synaptic connectivity, the verti-
cal NAND already approximates the solution. RRAMs and PRAMs 
can also be fabricated into multiple layers within a given die using 
3D integration. Multiple such 3D-integrated dies can then be ver-
tically stacked using TSV packaging to further boost the memory 
density (Fig. 4c). Due to its particular cell structure and fabrication 
rules, it might be more challenging to arrange the STT-MRAMs 
into a 3D stack, but this possibility merits further study.

The final neuromorphic system will combine the memory net-
work representing the functional synaptic connectivity map with 
N spiking silicon neurons fabricated in the CMOS logic process: 
the latter is to model18,19 individual neurons with their ion chan-
nels, signal propagations along axons and feedback routings, all 
extracted from the electrophysiological recording. As flash, MRAM, 
PRAM and RRAM can all be embedded in the CMOS logic pro-
cess, integrating the two functional parts in the same chip is pos-
sible. However, the optimum process for CMOS circuits is generally 
different from that for memory. Thus, to optimize each function, 
we can implement the synaptic connectivity memory network in 
one chip (together with the read–write electronics), and the spiking 
silicon neurons in another chip. The two chips can then be verti-
cally interconnected using TSVs to minimize footprint and latency 
(Fig. 4c). Such heterogeneous stacking was indeed a motivation to 
develop TSVs and has proven fruitful, as exemplified by the stack-
ing of a CMOS logic and a static random access memory (SRAM) 
for high-performance computing (Fig. 4d)59. Another example of 
this heterogeneous stacking is the CMOS image sensor: it stacks a 
photodiode sensor array, a logic and a DRAM die via wafer bonding, 
micro-bump bonding and TSV packaging (Fig. 4e). These exam-
ples illustrate the potential for a variety of vertical combinations of 
multiple CMOS chips (spiking silicon neurons) and memory chips 
(synaptic connectivity).

From the circuit design viewpoint, the network with either 
1,000N (Fig. 3a, left) or N2 (Fig. 3a, right) memories may have to 
be broken down into multiple blocks. Otherwise, the voltage drop 
of interconnects and the fanout issue can be considerable, although 
analogue spiking silicon neurons may alleviate the fanout issue 
somewhat. In either network, the cointegrated read–write electron-
ics can readily access an arbitrary memory cell by integrating a tran-
sistor switch selector for each cell.

Biological realism
The idea that the NNN stores information in its connection strength 
patterns and that this connection dictates the network dynamics for 
computing is a fundamental assumption of neuroscience60 and pro-
vides the basis of both the original neuromorphic pursuit1,2 and our 
vision to build an electronic brain by reverse engineering the func-
tional connectivity of neurons. Connectomics33,61–64, a path-breaking 
effort that seeks a dense reconstruction of the neuronal wiring of 
the brain, is also motivated by the same assumption65,66. A dominant 
method for connectomics is electron microscopy, which visualizes 
neuronal connections of serial brain slices at the synaptic resolu-
tion. The primary information obtained by the microscopy stud-
ies, at least so far, is an anatomical map, not a functional map, with 
no connection strengths quantified (some excitatory and inhibitory 
synapses in the mammalian brain may be distinguished due to dif-
fering morphologies). A given anatomical map can assume a variety 
of different connection strength patterns, thus producing different 
dynamics. Our copy-and-paste approach aims to reproduce the 
functional connectivity map, not just the anatomical map, speci-
fying the connection strength patterns. Moreover, this download 
strategy also includes other neuronal attributes such as ion chan-
nels, feedback routings and delays. This functional connectivity 

map would better narrow down the scope of network dynamics, 
ideally with one-to-one correspondence, allowing for neuromor-
phic system development without having to uncover how dynamics 
are encoded in the map.

The pasted network is a snapshot of the functional connectiv-
ity during the time it is copied, just as the connectomes obtained 
from electron microscopy32,33 are snapshots of the anatomical con-
nectivity. At the same time, the NNN connectivity undergoes life-
long changes, even in its adult form, from, for example, learning 
and experience. It is important to note, however, that the NNN is 
a stable structure despite the plasticity, consisting of definite and 
elaborate baseline circuits to perform well-defined tasks, which are 
passed down through generations. Identifying such baseline cir-
cuits is a major theme of neuroscience60. Both connectomics and 
our Perspective build on the idea that the snapshots could not only 
identify baseline circuits but also track, if taken at different times, 
the slow changes in them from learning and experience, thus help-
ing to understand plasticity66. Further, by analysing the changing 
behaviours and engineering them into the memories, we may, in 
principle, create a pasted network that exhibits similar long-term 
plasticity. The short-term plasticity influenced by, for example, 
sensory input, may be similarly analysed but with a higher time 
resolution, and may be engineered into the memories that exhibit 
short-term plasticity56,67,68.

As discussed earlier, our approach has many challenges. An 
additional limitation is that the electronic paste platform greatly 
abstracts the immense chemical complexities and convoluted signal 
pathways of synaptic transmission into lumped, effective synaptic 
connection strengths represented by memory conductance values. 
The same line of abstraction goes for modelling many different 
types of neurons and their membrane proteins with silicon circuits. 
We, however, share the sense of optimism of the connectomics 
researchers that our pasted network may approximate some essen-
tial aspects of the brain’s computing and would represent a first step 
towards brain reverse engineering.

Outlook
The lack of knowledge about the brain’s functional wiring diagram 
makes reverse engineering the brain—the original goal of neuro-
morphic electronics—extremely challenging. Over the past few 
decades, the aims of neuromorphic engineering have thus been 
relaxed from rigorous brain reverse engineering to brain-inspired 
design that uses qualitative features of the brain (such as event-driven 
asynchronous signalling and in-memory information process-
ing). These efforts have led to a number of exciting applications in 
dynamic vision sensing and low-power AI computing, but they are 
a far cry from creating a genuinely intelligent system. We have thus 
provided a vision to retarget the original goal of neuromorphic elec-
tronics. Advances in neuro-electronic interfaces have brought us 
closer to accessing the functional wiring diagram in the brain, and 
high-density memory technology—which has been made possible 
due to advances in 3D integration and packaging—offers a platform 
onto which to paste this wiring diagram. Our approach is ambitious, 
and there is no guarantee that all the challenges outlined here can be 
easily overcome. However, by working towards such a goal, we can, 
we believe, help push the boundaries of neuromorphic engineering, 
neuroscience and semiconductor technology.
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