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Abstract
Quasiparticles with fractional charge and fractional statistics are key features of the fractional
quantum Hall effect. We discuss in detail the de!nitions of fractional charge and statistics and
the ways in which these properties may be observed. In addition to theoretical foundations, we
review the present status of the experiments in the area. We also discuss the notions of
non-Abelian statistics and attempts to !nd experimental evidence for the existence of
non-Abelian quasiparticles in certain quantum Hall systems.
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1. Introduction

The experimental discovery in 1982, in a two-dimensional
electron system, of quantized Hall plateaus with Hall con-
ductivity σxy = νe2/h showing fractional values ν = 1/3 and
ν = 2/3, marked the beginning of one of the most surprising
and far-reaching developments in condensed matter physics in
the second half of the 20th century. These fractional quantized
Hall (FQH) plateaus, together with plateaus at other rational
fractional values of ν, were understood to be manifestations
of a new type of correlated electron state, with a number of
peculiar properties. Continuing experimental and theoretical
efforts have revealed a wide variety of FQH states, as well as
other unusual phenomena that can occur in two-dimensional
electron systems in a magnetic !eld at low temperatures, in dif-
ferent materials and under different conditions. Indeed, exper-
iments on these systems continue to produce surprises, and the
!eld of quantum Hall effects remains a vital area of condensed
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matter research today [1]. Moreover, insights gained from the
exploration of FQH states have also inspired predictions of a
variety of other unusual states in other systems.

One peculiar feature of the FQH states, which was under-
stood quite early, is that they must necessarily have well-
de!ned charged excitations (quasiparticles) with a charge that
is a fraction of the electronic charge. It was also predicted
that collections of these quasiparticles should obey fractional
statistics, such that the effective wave function for the quasi-
particles would be multiplied by a complex phase factor when
two quasiparticles are interchanged, in contrast with the fac-
tor of ±1 obtained on interchange of the familiar bosons or
fermions.

As we shall describe below, the existence of quasipar-
ticles with fractional charge and statistics is essentially an
inescapable logical consequence of the existence of FQH
states. Thus, in one sense, the observation of an FQH plateau
might be considered as a direct demonstration of the existence
in principle of quasiparticles with fractional charge and statis-
tics. However, it is not necessarily true that isolated quasiparti-
cles will form the lowest energy con!gurations when electrons
are added to or subtracted from a quantized Hall state, and it is
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not clear how easy it might be to prepare isolated quasiparticles
or to measure directly their charges.

In a similar vein, we may ask whether it is possible to see
a direct effect of fractional statistics in an experiment, such as
one where there is interference between two possible paths, in
which a pair of quasiparticles encircle each other a different
number of times. We shall see that there are numerous obsta-
cles that need to be overcome to carry out such an interference
experiment in practice. Furthermore, there are many complica-
tions, due particularly to subtle effects of Coulomb interactions
and to the possible participation of different species of quasi-
particles, which may complicate the interpretation of these
experiments. Nevertheless, major progress has been made.

In addition to quasiparticles with fractional statistics, cer-
tain FQH states have been predicted to have quasiparticles
with non-Abelian statistics. In this case, the interchange of
two or more quasiparticles can give rise to a unitary transfor-
mation between orthogonal quantum states in a Hilbert space
containing many degenerate ground states. In principle, the
existence of such quasiparticles should give rise to some strik-
ing experimental manifestations, with possible consequences
for technology. However, direct demonstration of the predicted
phenomena has, again, proved challenging.

In the following section, we shall introduce precise de!ni-
tions of fractional charge and fractional statistics, and explain
why quasiparticles with these properties are predicted to occur
in FQH states. In sections 3 and 4, we discuss in greater detail
the theory behind experiments designed to demonstrate most
directly the effects of fractional charge and fractional statis-
tics, and we review the current status of these experiments. In
section 5, we discuss in greater detail the concept and implica-
tions of non-Abelian statistics, and we discuss some examples
of FQH states where non-Abelian statistics have been pro-
posed to occur. The search for a clear manifestation of non-
Abelian statistics by means of Fabry–Perot interferometry is
discussed in section 6. In section 7, we discuss the alternate
geometry of a Mach–Zehnder interferometer, which has been
realized in an integer quantized Hall state but not yet in an FQH
state, and we review how the combination of fractional statis-
tics and fractional charge leads to a "ux period consistent with
the Byers–Yang theorem. In section 8, we discuss several other
experimental techniques, which reveal aspects of FQH effect
related to fractional charge and statistics, but which would not
be considered to be direct observations of these properties. We
present concluding remarks in section 9.

2. The meaning of fractional charge and fractional
statistics

2.1. Fractional charge

Fractional charge is relatively easy to de!ne in a model where
the Hamiltonian H contains only short-range forces [2]. For
any state |Ψ 〉 that is an eigenstate of H, we can de!ne a
charge density ρΨ (r), which is the time-independent expec-
tation value of the charge density operator ρ (r). If there is
an energy gap ∆E separating |Ψ 〉 from all other states of

the Hamiltonian, then the density ρΨ may be obtained with
arbitrary precision, in principle, by using an apparatus that
measures the density averaged over a time scale large com-
pared to !/∆E. If properly carried out, such a measurement
will not affect the quantum state |Ψ〉, and the measurement
may be repeated many times with the same results. In prac-
tice, the requirement for an energy gap of size ∆E given above
may be weakened, in that one may exclude eigenstates of H of
lower energy if they result from excitations, relative to |Ψ 〉 that
are localized in space far from the measuring point r.

In this paper, we shall consider typically a large system with
a Hamiltonian of the form

H = H0 + V (1)

where H0 is at least approximately translationally invariant in
regions far from the system boundaries, and V is a sum of local
perturbations, centered around a set of points {r j}, which will
be assumed to be far from the boundaries. Let ρ0(r) be the
charge density in the ground state of H0, let Ψ be a low-lying
eigenstate of the full Hamiltonian H, and let δρΨ = ρΨ − ρ0.
We shall say that the state |Ψ 〉 contains one or more localized
quasiparticles if δρΨ(r) differs substantially from zero in the
vicinity of at least one of the points r j, but is exponentially
close to zero at points r that are far from all r j and far from the
boundaries. If the point r j is well separated from other regions
where V is non-zero, we may integrate δρΨ(r) over the region
containing r j where it is non-zero and thereby obtain the excess
charge q j associated with the quasiparticle or quasiparticles
near point r j.

For an ordinary insulator, if one ignores the possible effects
of long-range Coulomb interactions, one !nds that the quasi-
particle charge qj will necessarily be an integer multiple of the
electron charge −e. For a FQH state, as we shall show below,
the quasiparticle charge can have values which are speci!ed
rational fractions of e.

More generally, we can see that the quasiparticle charge will
be a protected quantity, at least for a system with short range
interactions. Its value must remain constant if the microscopic
Hamiltonian is continuously varied, as long as the bulk mate-
rial retains an energy gap at the Fermi energy and the magnetic
!eld is !xed. Because the bulk material remains effectively
an insulator, it cannot carry an electric current over long dis-
tances toward or away from the quasiparticle. Consequently,
the localized charge, as well as the background charge density
in the bulk, must remain constant.

By an extension of this reasoning, a localized quasiparticle
can be moved around if we allow the localizing perturbation
V to be time dependent. In particular, if we allow the center
r j of an isolated localizing well to move suf!ciently slowly
as a function of time t, a state that is initially in eigenstate
of the Hamiltonian H at time t0 will be in the correspond-
ing eigenstate of the time-dependent Hamiltonian H(t) at any
later time. If the initial state had a quasiparticle localized at
point r j(t0), the state at time t will have a quasiparticle at
point r j(t). Clearly, the quasiparticle charge qj cannot change
in this process if the quasiparticle remains isolated from all
other quasiparticles throughout.
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It should be emphasized that the requirements that V varies
only slowly and that the measurement of the charge density
takes place over a time that is slow on the scale of the ground-
state energy gap is essential for these arguments. An instan-
taneous measurement of the electronic charge in any spatial
region will always yield an integer multiple of e.

In the presence of long-range Coulomb interactions, the
de!nition of quasiparticle charge is complicated by the
induced polarization of the dielectric medium. As a famil-
iar example, for a localized electron embedded in a three-
dimensional insulator with dielectric constant κ, the total
excess charge in the vicinity of the electron will actually be
equal to −e/κ, with the remaining charge distributed around
the boundary of the sample. By convention, we divide the local
charge into free charge and bound charge, so that the free
charge associated with the electron is said to be −e. Similarly,
for a quasiparticle in a FQH state with Coulomb forces embed-
ded in a dielectric medium, we de!ne the quasiparticle charge
q j as the free charge associated with the quasiparticle, which
will be equal to the local charge multiplied by κ in this case. It
is this free charge which will be quantized in rational multiples
of e.

We remark that if an electron is injected at one place on the
surface of a three-dimensional insulator and is moved through
the bulk of the sample to another place on the surface, the
total charge transferred between the two points will be −e,
not −e/κ. This is because the image charge on the surface of
the insulator moves along with the electron so the total charge
is transferred. Thus we may say that the total electric current
associated with an electron moving at a velocity v is given by
−ev, even though the local charge is −e/κ. In the case of a
quantized Hall system, the current associated with a quasipar-
ticle moving through the bulk is more dif!cult to de!ne, as
the system will necessarily have conducting states along its
edges.

What happens if we turn off the localizing perturbation V?
As H0 is supposed to be translationally invariant, a localized
quasiparticle will not, in general, be an eigenstate of the Hamil-
tonian. In an ordinary insulator, in the absence of a magnetic
!eld, the energy eigenstates will be plane-wave-like superpo-
sitions of localized states centered at positions throughout the
sample. For quantized Hall states, however, it is possible to cre-
ate localized states for a charged quasiparticle that are eigen-
states of the Hamiltonian. Of course, these states will be highly
degenerate, due to the many possibilities for choosing the cen-
ter r j, and the localized states can be mixed by an arbitrarily
small perturbation.

As one example, in the presence of a strong magnetic !eld
and a weak electrostatic potential V(r) that varies slowly in
space, energy eigenstates will generally extend all the way
along contour of constant potential, while being localized in
the perpendicular direction. One !nds, in this case, that a
quasiparticle wave packet, which is initially localized at some
point in space, will move along the potential contour line,
with a velocity vD, given by the classical formula, vD = E ×
B/B2, where E is the local in-plane electric !eld and B is the
perpendicular magnetic !eld.

2.2. Fractional statistics

2.2.1. Definition in terms of effective wave functions and effec-
tive Hamiltonian. Whereas fractional charge can be easily
de!ned for a single isolated quasiparticle or for a collection
of localized quasiparticles, the concept of fractional statistics
requires the consideration of two or more quasiparticles that
are able to move around each other or to interchange positions.
If one is con!ned to a suitable low-energy subspace, one may
hope to describe the quantum mechanical state of such a sys-
tem by an effective wave functionψeff that depends only on the
coordinates of the quasiparticles, rather than of all the electrons
in the system. The effective wave function should evolve in
time according to a Schrödinger equation with some effective
Hamiltonian Heff . Fractional statistics will be a characteristic
of the combination ψeff and Heff .

As was !rst noted by Leinaas and Myrrheim, in 1977, in two
dimensions it is possible to extend the formulation of quantum
mechanics to a situation where the wave function of a set of
identical particles is multiplied by a complex phase factor dif-
ferent from ±1, provided we may exclude from consideration
points where two quasiparticles coincide precisely in space [3].
Speci!cally, one may require that if one interchanges the posi-
tions of two identical particles by moving their coordinates
in a counterclockwise direction along a closed contour C that
encloses NC other quasiparticles of the same type, the wave
function should be multiplied by a phase factor e−iθ, where

θ = (1 + 2NC)θm, (2)

where the angle θm, de!ned modulo 2π, is a characteristic of
the type of quasiparticle in question. (We use the index m to
distinguish between different species of quasiparticles.) If the
position of a single quasiparticle is moved along a closed loop
enclosing NC other identical quasiparticles, the wave function
must be multiplied by e−2iNCθm . For cases other than θm = 0
or π, this requires that the wave function be multivalued, or
equivalently that it is de!ned on a multi-sheeted Riemann sur-
face. Nevertheless, quantum mechanics can be generalized in a
straightforward way to deal with this situation. In a case where
θm %= 0 modπ, if the effective Hamiltonian Heff can be writ-
ten as a local function of the positions r j and the momenta
p j = −i!∇ j, with the possible addition of long-range
Coulomb forces that depend on position variables only, one
says that the quasiparticles obey fractional statistics, with sta-
tistical angle θm. Such quasiparticles are often referred to as
anyons [4].

To describe quasiparticles with fractional statistics, how-
ever, it is not actually necessary to employ multivalued wave
functions. The multiple phase factors can be eliminated by
implementation of a unitary transformation, essentially a sin-
gular gauge transformation [3]. Speci!cally, if ψeff is a mul-
tivalued wave function as described above, let us de!ne a
transformed wave function ψ′

eff by

ψ′
eff{r j} = ψeff{r j}

∏

k<l

(
zk − zl

|zk − zl|

)θm/2π

, (3)
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where z j = x j + iy j is the position of particle j in complex
coordinates. The transformed wave functionψ′

eff will be single
valued and will be invariant under interchange of two parti-
cles, as would be expected for particles obeying Bose–Einstein
statistics. The price one has to pay however, is that the trans-
formed Hamiltonian H′

eff will not longer be local in space.
To obtain H′

eff from Heff , one must replace the operators p j
by [p j − a j(r j)], where a j, known as a Chern–Simons vector
potential, depends on the positions of all the other quasiparti-
cles in the system. Speci!cally, one has

a j(r j) =
θm

2π

∑

k %= j

(
ẑ × (r j − rk)
|r j − rk|2

)
, (4)

where ẑ is the unit vector normal to the plane. Thus, an alter-
nate de!nition of fractional statistics is that if quasiparticles are
described by a single-valued wave function ψ′

eff that is invari-
ant or changes sign under interchange of quasiparticle posi-
tions, the effective Hamiltonian must be non-local, containing
a Chern–Simons vector potential of the form (4).

The de!nitions of fractional statistics must be extended in
the case where there may be several kinds of quasiparticles
present. Now we must introduce a new set of quantities θmm′ ,
which will be equal to one-half the phase acquired when a
quasiparticle of type m is moved around a quasiparticle of type
m′, in a representation with multivalued wave functions and
no Chern–Simons vector potential. When m %= m′, the quan-
tity θmm′ is only de!ned modπ, but for identical particles, we
require θmm = θm mod 2π.

Again, as an alternative to the above de!nition, one can
make a singular gauge transformation to a representation
with single-valued wave functions, at the cost of introducing
Chern–Simons vector potentials, analogous to (4), which may
couple to the different species in different ways. In particular,
to obtain the value of a j seen by a particle of type m, we must
include a sum of terms of the form (4), where the coef!cient
θm is replaced by θmm′ , if particle k is of type m′:

a j(r j) =
∑

m′

θmm′

2π

∑

k %= j

(
ẑ × (r j − rk)
|r j − rk|2

)
, (5)

It follows from the above de!nitions that in all cases, θm′m =
θmm′ . Also, if we combine two quasiparticles of type m and m′

to form a new quasiparticle, of type M, the angle θMm′′ describ-
ing the mutual statistics between the hybrid quasiparticle and
a third quasiparticle of type m′′ will be equal to θmm′′ + θm′m′′ .
As a corollary, if we group together n identical quasiparticles
of type m, the resulting clusters will have a self statistical angle
of θM = n2θm.

2.2.2. Illustrative example. As an example to illustrate a
physical consequence of fractional statistics, let us consider
a system containing either one or two identical anyons with
charge qm in an external magnetic !eld B. We shall assume
that there is at most a short-range interaction between the
anyons. We also assume a weak circularly symmetric parabolic
electrostatic potential of the form

Φ(r) =
K
2

r2, (6)

with qmK > 0, in addition to a stronger short-range attractive
potential that can trap a localized quasiparticle near the origin.
The case of a single charged particle in a uniform magnetic
!eld and a weak parabolic potential is exactly solvable. For a
particle in the lowest Landau level, the energy eigenstates will
consist of a series of circular orbits with

〈r2〉 = 2(n + 1)!/|qmB|, n = 0, 1, 2, . . . , (7)

and energy given by

E = E∗
0 +

qmK
2

〈r2〉, (8)

where E∗
0 is a constant. The addition of a localized potential

well near the origin will have negligible effect on the energies
or eigenstates for large values of n.

Let us now consider a system with one quasiparticle, say
quasiparticle 1, localized in the well near the origin, and the
second quasiparticle sitting in a circular orbit of large radius.
According to the Bohr–Sommerfeld rules, we should calculate
the allowed radii by requiring that the action for the circular
orbit should be equal to an integer multiple of 2π. Because of
the Chern–Simons term due to the presence of particle 1, the
action for quasiparticle 2 will be shifted by an amount

δS =

∮
a2(r2) · dr2 = 2θm. (9)

The result is that (7) will be replaced by

〈r2〉 = 2(n + 1 − σθm/π)!/|qmB|, (10)

where σ = sign(qmBz). If θm %= 0 modπ, the set of allowed
values for r2, and hence for the energies for quasiparticle 2, will
be different depending on whether quasiparticle 1 is present or
not.

The above arguments can be generalized to the case where
one has two indistinguishable quasiparticles in orbits that are
not localized near the origin. In this case, one !nds that the set
of allowed energy levels will be sensitive to θm mod 2π.

2.2.3. Relation to the microscopic Hamiltonian. To make
these ideas more concrete, let us return to the microscopic
states for a system containing a given number N of identical
quasiparticles. Let |Ψ({r j}) 〉 be the many-electron state with
quasiparticles localized at speci!ed positions (r1, . . . , rN). The
set of such states, which we here assume to be unique except
for a phase, will form an (over-complete) basis for the set of
states we are interested in. The set of allowed positions r j may
include restrictions, such as a minimum separation between
two quasiparticles. We shall assume that any state in the Hilbert
space of interest can be written as a superposition of basis
states, in the form

|Ψ 〉 =

∫
dr1 . . . drNψeff({r j})|Ψ({r j}) 〉 . (11)

Once we have made a speci!c phase choice for the basis
states |Ψ({r j}) 〉, we can de!ne a Berry connection,

αk({r j}) = i 〈Ψ({r j})|∇k|Ψ({r j}) 〉 , (12)

4
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where ∇k is the gradient with respect to the position rk. We
may now consider a situation in which the positions of two
quasiparticles, labeled k and l, are interchanged by moving
them around a speci!ed contour C in a counterclockwise fash-
ion, until their !nal positions are interchanged from their initial
positions, while the positions of all other quasiparticles are
held !xed. The Berry phase for the process is given by

θCkl =

∫
drk · αk +

∫
drl · αl, (13)

where the integral is taken along the contour. Whereas the
Berry connections α j depend on the particular choices made
for the phases of the basis states, the Berry phase θCkl may be
seen to be independent of those choices, up to an additive mul-
tiple of 2π. Thus the quantity eiθCkl is independent of the phase
choice and is therefore gauge invariant. For a system of identi-
cal anyons of charge qm in an external magnetic !eld, the value
of θCkl should be given by

θCkl ∼ (1 + 2NC)θm + 2πqmBzAC/!, (14)

where AC is the area enclosed by the contour C, θm is a constant
characteristic of the type of quasiparticle under consideration,
and NC, as before, is the number of additional quasiparticles
enclosed. Equation (14) is supposed to be exact when the con-
tour C is large and quasiparticles k and l stay far from all other
quasiparticles, but there can be corrections if these conditions
are violated. Nevertheless, the implication of (14) is that with
a suitable choice of gauge, α j may be written in the form

α j = qmA(r j) + a j(r j), (15)

where A is the vector potential due to the applied magnetic
!eld B, and a j is just the Chern–Simons vector potential
given by (4). The discussion may be readily extended to the
case where there are several types of quasiparticle present,
in which case the !rst term in (14) should be replaced by
(θm + 2

∑′
mNm′

C θmm′ ), where Nm′
C is the number of quasiparti-

cles of type m′ enclosed by the contour, and the de!nition of
a j must be extended, as described in equation (5).

Next, we must examine the time evolution of a state |Ψ 〉
of the form (11). It is convenient for this purpose to use path
integral approach. Then the state at time t can be related to the
state at time 0 by a unitary transformation of the form

ψeff({r j}, t) =

∫
d{r′k}K({r j}, {r′k})ψeff({r′j}, 0), (16)

where the kernel K is given by the sum of e−iS over all paths
connecting the initial and !nal con!gurations of positions,
with S being the action associated with the path. To a good
approximation, we may evaluate S as

S =

∫
dt′′U({r′′j }) +

∑

j

∫
dr′′j · α j(r′′j ), (17)

where U({r′′j }) is the expectation value of the microscopic
Hamiltonian H in the basis state |Ψ{r′′j } 〉, and the integral is
taken along the path from the initial to the !nal con!guration.
This expression coincides with the formula for the action of

a collection of particles with charge qm subject to an applied
magnetic !eld and a Chern–Simons vector potential, in the
presence of a position-dependent potential energy U, in the
limit where the effective mass of the particle is taken to zero,
i.e., in the limit where the particles are all in the lowest Landau
level.

More generally, U should be replaced by an operator that
may include terms that are slightly off-diagonal in the posi-
tion variables, which would lead to additional momentum-
dependent terms in the Hamiltonian, including, perhaps, short-
range momentum-dependent interactions between the quasi-
particles. Matrix elements of the microscopic Hamiltonian that
mix states in the low-energy subspace we are considering with
states outside that subspace may be taken into account via per-
turbation theory as corrections to the matrix elements of U. In
a similar fashion, the effects of mixing between Landau lev-
els due to interactions in a system of particles with nonzero
mass may be included in a model that is projected onto a single
Landau level by including suitable corrections to the interac-
tions within the Landau level. As long as corrections to the
interaction terms remain short-ranged in space, they can be
distinguished from the Chern–Simons interaction, and will not
affect the behavior of well-separated quasiparticles. Thus, the
values of the statistical angles θmm′ remain well-de!ned and
unchanged.

The interplay of Landau-level mixing with long-range
forces can change the apparent values of θmm, as discussed in
[5, 6]. However, the deviations decay as a power of the distance
between quasiparticles.

2.2.4. Non-Abelian statistics. In our previous discussions,
we have assumed that if the locations and types of all quasipar-
ticle are speci!ed, there will be a unique low-energy state of
the Hamiltonian corresponding to this speci!cation. However,
a very different situation is believed to occur in some special
quantized Hall states. For these states, in a situation with N
localized quasiparticles, there should be a number of nearly-
degenerate low-energy eigenstates which grows exponentially
with N. The energy differences between these states should
fall off exponentially with the separation between quasiparti-
cles, and they are frequently treated as negligible in theoretical
discussions.

Now, if a set of quasiparticles are slowly moved around
each other or interchanged, in such a way that the set of !nal
positions for each quasiparticle type is identical to the initial
set, the !nal state of the system will be related to the initial
state by a unitary transformation in the Hilbert space of low-
energy eigenstates. Furthermore, if the braiding process is fast
compared to the ‘exponentially small’ energy splittings of the
Hilbert space, the unitary transformation will depend on the
topology of the braiding, but will be independent of all other
details of the paths that are taken. For processes that involve
multiple interchanges of quasiparticles, the resulting unitary
transformation will generally depend on the order in which the
interchanges have been performed. Hence, the quasiparticles
are said to obey ‘non-Abelian statistics’.

Because a full discussion of various types of non-Abelian
statistics and the ways in which they may be manifest in
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quantum Hall systems is complicated, we shall defer that
discussion until later sections of this paper, and shall !rst
concentrate on states with Abelian fractional statistics.

2.3. Application to quantized Hall states

2.3.1. Fractional charge. In Laughlin’s landmark 1983 paper,
which described his trial wave function for the fractional Hall
ground state at ν = 1/3 and related fractions, he also pro-
posed wave functions for the elementary quasiparticles, often
denoted as quasielectrons and quasiholes [7]. The added elec-
tric charges associated with these proposed wave functions
were, indeed, fractions of an electron charge, viz., qc = ±e/3.
Since the trial wave functions are not exact eigenstates of
the Hamiltonian for a realistic model with Coulomb inter-
actions, one might be tempted to question the exactness of
the charge quantization based on them. However, Laughlin
presented a more general argument that quasiparticles with
fractional charge must be a feature of any FQH state.

Consider a two-dimensional electron system in a FQH state
with !lling factor ν on a large disk of radius R. Let us puncture
the disk with a hole of diameter a at the center of the disk, and
let us thread an in!nite solenoid with radius less than a through
the hole. In two dimensions, the scattering cross section of a
barrier of radius a will vanish [8] in the limit a → 0, propor-
tional to 1/ln2|a|. Thus, in the limit a → 0, the solenoid will
have no effect on electrons in the system when there is no "ux
through the solenoid.

Now, start with a situation where the system is initially in
its ground state and there is no "ux in the solenoid, and gradu-
ally increase the "ux until the solenoid contains precisely one
"ux quantum, pointing in the same direction as the uniform
magnetic !eld. (Note: in our discussions of quantum Hall sys-
tems, throughout this paper, we shall assume that the applied
magnetic !eld B points along the negative z axis, unless oth-
erwise speci!ed, and B = |B| > 0.) The time-dependent "ux
will generate an azimuthal electric !eld, which will drive elec-
trons in toward the origin, due to the non-vanishing Hall con-
ductance. A simple calculation shows that the total charge
accumulated near the origin will be equal to −νe. This extra
charge will have come from the edge of the system, where there
is necessarily a reservoir of low-energy conducting states [9].
Since there is a !nite energy gap in the bulk of the system, we
expect, according to the adiabatic theorem, that the !nal state
will again be an energy eigenstate of the system. (Although, in
principle, the adiabatic theorem could break down at an instant
where the added energy of the system due to the charge at the
origin crosses the energy for adding the charge back to a state
at the edge of the system, the matrix element for such a transfer
will be exponentially small, if the radius R is very large com-
pared to the magnetic length. In addition, for a system with
circular symmetry, the matrix element will be identically zero
by angular momentum conservation.)

Although the Hamiltonian with the added "ux quantum is
mathematically different from the original Hamiltonian, we
can make a gauge transformation that eliminates the vec-
tor potential due to the solenoid, multiplying the wave func-
tions by a position-dependent phase factor and restoring the

Hamiltonian to its original form. Thus, the original Hamilto-
nian must have an eigenstate with the same energy and charge
distribution as the one we have found for the state with an
added "ux quantum.

Of course, we can generate a quasiparticle with charge +νe
by repeating the above procedure with solenoid "ux in the
opposite direction. There is no guarantee, however, that quasi-
particles with charge ±νe have the lowest energy or the small-
est charge of any possible quasiparticle in the system. In par-
ticular if ν = p/q, where p and q are integers with no common
divisor, one can always construct a quasiparticle with charge
qm = ±e/q. Since p and q have no common divisor, there will
necessarily exist integers n and n

′
such that nq − n′p = 1. Then

a combination of n′ quasiparticles of charge νe and n electrons
will have total charge −e/q.

These arguments do not require that e/q is necessarily the
smallest charge for a quasiparticle in the system. For example,
the various competing models [10] proposed to explain the
even-denominator quantized Hall state observed at ν = 5/2
have quasiparticles with charge ±e/4. Levin and Stern have
argued [11], in fact, that for any FQH state with even
denominator q, there must exist quasiparticles with charge
qm = ±e/2q.

2.3.2. Fractional statistics. The prediction that quasiparticles
in FQH states should obey fractional statistics was made in
1984, by Halperin [12], and slightly later, by Arovas et al [13].
The analysis of Halperin was based on the behavior of effec-
tive wave functions for collections of quasiparticles, similar to
the discussion in subsection 2.2.1, above. By contrast the anal-
ysis of Arovas, et al, made use of the de!nition presented in
subsection 2.2.3, speci!cally, by calculating the Berry phase
acquired on interchanging the positions of two quasiholes in
the ν = 1/3 state, using Laughlin’s trial wave function for the
quasiholes.

The analysis of [12] was motivated by the following set of
observations. Laughlin’s wave functions for the FQH states at
ν = 1/m involve a factor of

∏
j<k(z j − zk)m, in addition to a

Gaussian factor which assures that the electrons have the cor-
rect density. These trial wave functions minimize the kinetic
energy, as all particles lie in the lowest Landau level, and they
are ef!cient at minimizing the potential energy, at least in the
case of short-range repulsive interactions, as the wave func-
tions vanish rapidly when two electrons come close together.
Moreover, if m is an odd integer, the wave function is antisym-
metric under the interchange of two particles, as required by
Fermi statistics. If one were to replace the exponent m in this
product by a non-integer exponent γ, and if one multiplied the
exponent in the Gaussian factor by a constant s−1, one would
have a wave function that describes a collection of anyons in
the lowest Landau level for particles of charge ±e/s. The expo-
nent γ would be related to the statistical angle θm of the anyons
by

γ = 2n ± θm/π, (18)

where the sign in (18) depends on the sign of the anyon charge
and the direction of the applied magnetic !eld. With our choice
of Bz < 0, if one assumes θm = π/3 for quasielectrons in the
ν = 1/3 state, and one choses n = 1, one !nds that with the
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negative sign in (18) the density of e/3 quasielectrons is just
such as to increase the !lling factor to ν = 2/5. If one assumes
again θm = 1/3 for the quasiholes, uses the positive sign in
(18), and chooses n = 1, the density of quasiholes is such as to
decrease the !lling factor to ν = 2/7. FQH states were, indeed,
observed experimentally at both these !lling factors.

Other fractions could be generated using larger values of n.
As noted in [12], this procedure could be repeated, so that start-
ing from a given FQH state with ν = p/q, by adding quasi-
particles of charge ±e/q and appropriate statistical angle, one
could generate daughter states corresponding to fractions with
larger values of p and q. An iterative formula was developed
for predicting the statistical angle θm at each new fraction, and
it was shown that in this manner one could generate a unique
FQH state for any fraction p/q with odd denominator. (Of
course, there would be no guarantee that the resulting FQH
state would actually be the lowest energy state for a system
with any particular form of the electron–electron interaction.)

The form of the effective wave function and the choice of
statistical angle were further justi!ed in [12] by comparison
with microscopic trial wave functions that had been introduced
earlier to describe a collection of quasielectrons at ν = 1/3
and the ground state at ν = 2/5 [14]. Of course, these trial
wave functions are only approximate descriptions of the true
energy eigenstates for a realistic Hamiltonian, as is also the
case for the trial wave function used in [13] for a pair of quasi-
holes. However, the statistical angle should be a topologically
protected quantity, meaning that its value cannot change under
any deformation of the Hamiltonian that does not cause the
energy gap to collapse and does not provoke a !rst-order phase
transition.

In 1989, Jainendra Jain proposed the ‘composite fermion’
approach of generating trial wave functions for FQH states,
which has proved to give energies and wave-functions that are
generally much more accurate than those obtained by previous
methods, particularly for states with large denominator [15].
However, the statistical angles calculated for quasiparticles at
a given odd-denominator fraction ν turn out to be the same
as the ones predicted for the same fraction in [12]. A general
description of all possible FQH states with Abelian statistics,
including but not limited to the Jain states, has been given by
Wen [16]. The description includes predictions for the charges
and statistical angles of quasiparticles, as well as other topo-
logical quantum numbers, such as the ‘shift parameter’, for
these states.

As was seen in the case of fractional charge, the necessity
that quasiparticles in an FQH state obey fractional statistics
can actually be demonstrated by an argument that does not
make any speci!c assumptions about the form of the ground
state at a given fraction ν. Consider a gedanken experiment
similar to that described in subsection 2.2.2, where an FQH
system with ν = 1/3 is subject to a weak parabolic potential of
form (6). If we add a single quasihole to the system, with pos-
itive charge qm = e/3, it will have a series of equally spaced
energy levels, with energies given by (7) and (8). If the quasi-
hole is placed in orbit with radius rn, there will be an electric
current around the orbit of magnitude In = qmvd/2πrn, where

vd = Krn/B is the classical drift velocity in the perpendicular
electric and magnetic !elds.

Now let us place a thin solenoid at the origin and slowly
change the "ux through the solenoid from zero to one "ux
quantum antiparallel to the applied magnetic !eld. This will
produce an additional quasihole at the origin and will mod-
ify the orbit of the circulating quasihole. The electromotive
force generated by the time-dependent "ux will do work given
by 2πI/|e|, which will increase the energy of the circulating
quasihole by expanding its orbit in the parabolic con!ning
potential. By equating the work done with the change in radius,
we see that the new orbit radius will be related to the old one by
replacing (7) with (10) and choosing θm = π/3. Thus the set
of allowed orbits for the circulating quasiparticle is different
from the set before the "ux was turned on. Since the solenoid
"ux can be removed from the Hamiltonian by a gauge trans-
formation, the change in the set of allowed radii is entirely
due to the presence of a new quasihole at the origin, and not
to any change in the Hamiltonian itself. Thus we see that the
quasihole must have a statistical angle equal to π/3 mod π in
this case. More complicated arguments can be used to demon-
strate the necessary occurrence of fractional statistics for other
FQH states. We shall address one such argument, employing a
Mach–Zehnder interferometer, in section 7.

The appearance of fractional statistics in FQH states is
closely related to the fact that the ground states of these sys-
tems are degenerate when studied on a torus or another com-
pact manifold with genus ! 1. It was noted early on that for a
translationally invariant system containing Ne interacting elec-
trons in the lowest Landau level in a !nite rectangle with peri-
odic boundary conditions containing NΦ quanta of magnetic
"ux, every eigenstate of the Hamiltonian must be at least q-fold
degenerate, where q is the denominator of the fraction Ne/NΦ

reduced to lowest terms [17, 18]. This degeneracy will gen-
erally be split in the presence of disorder, but in the case of
an FQH state, where the ground states are separated from all
other eigenstates by a !nite energy gap, the splittings between
the ground states will fall off exponentially with the size of
the system, and will therefore be negligible for a suf!ciently
large system [19]. More generally, it can be shown that any
system that supports excitations with fractional statistics must
be degenerate on a large torus [20]. Predictions for the ground
state degeneracies of Abelian and non-Abelian FQH states on
a torus and on manifolds of higher genus may be found in var-
ious places in the literature [21–24]. Although these questions
are signi!cant theoretically, we shall not discuss them further
in the present review, as we are focused on phenomena that can
be studied experimentally.

2.3.3. Edge modes. In our previous discussions, we have
focused on the properties of localized quasiparticles, or col-
lections of quasiparticles, that are far from any edges of the
sample. However, fractionally charged quasiparticles can also
exist in delocalized states along the edges of a sample, or at
a boundary between two quantized Hall states with different
Hall conductivity. As was originally noted in [9], there must
be gapless modes at a boundary between a gapped quantum
Hall liquid and a vacuum. In the case of integer quantized Hall
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states, these edge modes may be understood as orbits for elec-
trons at the Fermi level, which propagate along the edge in
a particular direction. For FQH states, the edge modes may
be similarly interpreted as orbits for quasiparticles of various
types.

Though the charge on an edge will be conserved if there are
no contacts to the edge and the edge is far from all other edges
of the sample, charges can tunnel between two opposite edges
of a sample if there is a narrow constriction which brings them
close together. When the tunneling strength is small, trans-
fer of charge from one edge to another can occur in discrete
units which may be interpreted as the charge of a tunneling
quasiparticle. In a geometry with two or more constrictions,
there can be interference features that one can attribute to the
difference in phase accumulated by a quasiparticle in tunnel-
ing from one edge to the opposite edge via the possible paths
involving tunneling at different constrictions. For quasiparti-
cles with fractional statistics, the accumulated phase will be
sensitive to the number of other quasiparticles enclosed by
the difference in paths. Therefore, interference experiments
can provide a means for observing effects of the fractional
statistics.

Although fractional statistics as well as fractional charge
may be measured, in principle, with experiments on quasipar-
ticles far from any sample edges, as illustrated by the gedanken
experiments described above, in practice studies of fractional
statistics have always employed interferometers with tunnel-
ing between edges. As described below, a few experiments
have succeeded in measuring fractional charge accumulation
in localized regions far from any edge of the sample, but even
here, the majority of experiments have involved edge modes
and have measured the charges of quasiparticles tunneling
from one edge to another across a constriction.

Since quantum Hall edges are interacting gapless systems,
it is not possible to de!ne quasiparticle charge in the same
way as in the bulk. In particular, charges propagating in a one-
dimensional metal may break up into multiple pieces, giving
rise to such phenomena as spin-charge separation and charge
fractionalization [25–27]. These phenomena would be sensi-
tive to details of the edge. However, charges tunneling from
one edge to another through a gapped quantum Hall state
should be quantized, and can be measured, at least in the dilute
limit, by noise experiments. A more detailed discussion of
edge modes in FQH states will be given below in the section
on non-Abelian statistics.

3. Experimental probes of fractional charge

Fractional charge was one of the earliest predictions of the
FQH theory, but it took more than a decade to directly
observe it. Three experimental techniques have been imple-
mented: noise [28–36], Aharonov–Bohm (AB) interferome-
try [37–40], and charging spectroscopy [41–47]. The bulk of
our knowledge comes from shot noise experiments, and we
start with their review. This includes a discussion of a recent
experiment on photo-assisted shot noise [35]. We then dis-
cuss two approaches to charging spectroscopy. Because the

interferometry technique uses the same setup to probe frac-
tional statistics and fractional charge, we shall defer discussion
of both applications until the following section.

3.1. Shot noise

Suppose that particles of charge qm tunnel through a high
barrier between two conductors. The tunneling rate from the
higher to lower electrochemical potential is Tq so that the aver-
age current 〈I(t)〉 = qmTq. The shot noise technique focuses
on the low-frequency "uctuations of the current. The noise is
de!ned as

S =

∫ ∞

−∞
dt exp(iωt)〈I(t)I(0) + I(0)I(t)〉, (19)

where we are interested in the ω → 0 limit. The integral
reduces to the mean square "uctuation of the total transmit-
ted charge over a long time t, S = limt→∞ 2〈[∆Q(t)]2〉/t. In
the low-transmission limit, this simpli!es to

S = 2qmIT, (20)

where IT is the average tunneling current. The quasiparticle
charge can be extracted, if both noise and current are known.
The derivation does not depend on any details of the Hamilto-
nian and applies as long as Tq is small and no charges tunnel
uphill from the lower to higher electrochemical potential. The
latter is true as long as the temperature is low compared to the
voltage energy scale qmV . Measurements of the current noise
at a !nite frequency ω can be used to determine the quasiparti-
cle charge provided thatω is less than a value that is necessarily
smaller than microscopic frequencies such as !−1 times the
energy gap and I/e but in practice is likely to be limited by
details such as capacitive lags on the sample or characteristics
of the measuring apparatus.

Shot noise was used with success to measure the electron
charge [48] as early as in 1918, but almost a century elapsed
before it was extended to FQH quasiparticles in [28, 29]. The
schematics [49–52] of the experimental setup are shown in
!gure 1. In the quantum Hall effect, the bulk is gapped, and
charges travel along edges, which are maintained at differ-
ent voltages in the setting of !gure 1. A narrow constriction
allows charge tunneling between the edges. Since tunneling
charges cross the bulk of the sample, they are restricted to
the allowed quasiparticle charges in the bulk. Usually, but not
always, the lowest quasiparticle charge dominates the limit of
weak tunneling and can be extracted from shot noise. The noise
is detected in the drain at the end of one of the edges. In the
absence of the Nyquist noise, at zero temperature, the drain
noise is the same as the noise of the tunneling current IT.

In real experiments, the temperature and the frequency ω
remain !nite. A !nite frequency does not affect the interpreta-
tion of the data as long is 1/ω exceeds all other time scales in
the problem, such as the thermal scale !/T and the Joseph-
son scale !/qmV . Experiments are typically performed at
ω ∼ 1 MHz.

The effect of a !nite temperature is more complex. Access
to fragile FQH states requires simultaneous low temperatures
and voltages, and the limit of T , qmV might not be available.
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Figure 1. Shot noise setup with chiral edges. The incoming current
from source S splits into the transmitted current I into drain D1 and
the tunneling current IT into drain D2. Current "uctuations can be
measured at D1 or D2.

Fortunately, a universal relation [53] exists among the tun-
neling current IT, the voltage, the temperature, and the noise:

S = 2qmIT coth
qmV
2kBT

− 4kBT
∂IT

∂V
+ 4kBTG, (21)

where G = νe2/h is the quantized Hall conductance. Equation
(21) contains the non-linear tunneling conductance ∂IT

∂V and is a
consequence of detailed balance [54] and "uctuation relations
[55, 56]. It applies irrespectively of microscopic details as long
as tunneling is weak and the edges are chiral, that is, all edge
modes propagate in the same direction, as is the case at the
!lling factors ν = 1/(2n + 1).

The interpretation of experiments on FQH states with non-
chiral edges is complicated by hot spot formation [53]. A
non-chiral edge contains a downstream charge mode that car-
ries charge and energy and one or more neutral modes that
carry energy in the opposite upstream direction. When a biased
charged mode arrives to a grounded terminal, Joule heat is dis-
sipated. Some of it is carried back by neutral modes. This heat
arrives to the source and affects the thermal noise of the out-
going current. This, in turn, affects the measured noise in the
drain so that equation (21) no longer applies. The problem can
be alleviated [53] with "oating contacts along the edge. (See
!gure 2.) The contacts absorb the excess heat carried by the
neutral modes.

The !rst experiments [28, 29] revealed charges e/3 at the
!lling factor ν = 1/3. Subsequent work [30–33, 36] reported
quasiparticle charges e/3 at ν = 2/3, 4/3, 5/3 and 8/3, e/5
at ν = 2/5, and e/7 at ν = 3/7 in agreement with the low-
est quasiparticle charges predicted at those !lling factors.
Charge values, consistent with the lowest theoretical values,
qm ∼ 0.25e at ν = 5/2 and qm ∼ 0.3–0.4e at ν = 7/3 were
also observed [33, 34], but only at intermediate tunneling rates.
The observed tunneling charge grows in the weak-tunneling
limit.

A challenge for equation (21) is the growth of the observed
qm as the temperature goes down at several !lling factors. This
does not happen at ν = 1/3, where qm stays at e/3 (see, how-
ever, [34]). On the other hand [31], qm reaches 2e/5 at the low-
est temperatures at ν = 2/5, the low-temperature qm reaches
2e/3 at ν = 2/3, and qm reaches 2.4e/7 at the lowest avail-
able temperatures at ν = 3/7. A possible explanation consists

Figure 2. Shot noise setup useful for edges with upstream neutral
modes. Drain D sends the current in a narrow range of frequencies
to the ampli!er that measures the voltage noise. The rest of the
current arrives to the ground, where a hot spot h forms. Floating
contacts F absorb excess heat carried by the upstream modes
emitted from the hot spot and the tunneling contact.

in the competition of the tunneling of quasiparticles with the
charge e/q and composite quasiparticles of the charge pe/q at
ν = p/q. The bulk energy cost of a quasiparticle grows with its
charge. Hence, the bare tunneling amplitude of a quasiparticle
through a constriction between two edges is higher for a lower
charge. This is not necessarily the case for the renormalized
tunneling amplitude that controls low-temperature transport.
It was indeed observed in [57, 58] that the tunneling of the
charges pe/q is more relevant in the renormalization group
sense than the tunneling of the charges e/q at low energies at
the !lling factors p/q = p/(2p + 1). Thus, high-temperature
and low-temperature tunneling may be dominated by different
charges, and both charges compete at intermediate tempera-
tures. Similar physics was also proposed at ν = 5/2 in the
presence of 1/ f noise [59]. Recent data raise a question about
this interpretation. The tunneling charge is usually extracted
from the autocorrelation of the drain current. It is also possi-
ble to extract it from the cross-correlation of the currents in
two drains (!gure 1). It was observed [60] that the autocor-
relation gives the effective charge that grows at low T, yet the
charge extracted from the cross-correlation in the same sample
remains at its high-temperature value.

The above discussion focuses on weak tunneling since
equation (20) holds only in that limit. Much interesting physics
is observed at intermediate transmissions (see, e.g., [53]), but
the Fano factor of the noise cannot be interpreted in terms of
the tunneling charge in that case, which is thus beyond the
scope of the review. Theory predicts a rather boring picture at
strong quasiparticle tunneling. This case is best understood in
terms of the dual geometry (!gure 3), where electrons tunnel
between two separate FQH liquids. The Schottky noise fol-
lows equation (20) with the electron charge in place of qm.
However, a surprise was found when a dilute beam of fraction-
ally charged quasiparticles impinged on a weak link between
two FQH liquids. The observed tunneling charge equaled a
fractional quasiparticle charge [61]. The standard theoretical
toolbox sheds no light on this puzzling phenomenon [62].

It should be noted that charge density in an electrostatically
de!ned constriction is lower than in the FQH bulk. This may
affect the !lling factor in the constriction and the nature of the
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Figure 3. The geometry with two FQH regions is dual to the
geometry from !gure 1.

quasiparticles whose tunneling is allowed. In particular, frac-
tional tunneling charges were observed in the integer quantum
Hall effect [63]. Charge fractionalization on integer edges is
also possible [64] due to purely edge physics that is beyond
the scope of this review.

3.1.1. Photo-assisted shot noise. This technique combines a
dc bias V with an ac bias Vac ∼ cos(ωt) in the geometry of
!gure 1. A charge q, emitted from the source, acquires a time-
dependent phaseφ(t) = q

∫
dtVac(t)/!. This can be interpreted

as a shift in the energy of tunneling quasiparticles. Without an
ac bias, the available energy is qmV . The absorption of n quanta
of the ac !eld shifts the energy to qmV + n!ω. The observed
shot noise [65–67] is then a weighted sum of the noises at dc
voltages V + n!ω/qm,

S =
∞∑

n=−∞
wnSdc

(
V +

n!ω
qm

)
, (22)

where the weight wn re"ects the probability to absorb n quanta.
The low-temperature noise is singular at V = !ω/qm. This
was used [35] to verify qm = e/3 at ν = 1/3 and qm = e/5 at
ν = 2/5.

In a related experiment [36], high frequency noise measure-
ments at f ≈ 7 GHz with dc bias show q = 0.34e at ν = 4/3
and q = 0.38e at ν = 2/3. See [68] and references therein for
related theoretical ideas.

3.2. Charging spectroscopy

In principle, the most direct way of measuring the charge of a
quasiparticle is to form a weak potential well, using a local
external gate, which is just strong enough to bind a single
quasiparticle, and to measure the change in the electric charge
in the region about the well when a quasiparticle is induced to
enter or leave the trap. This could be done by varying the depth
of the potential well, by applying voltage to a contact which
varies the electrochemical potential of the two-dimensional
electron system, or by changing the magnetic !eld to vary
the chemical potential of the surrounding FQH state. Alterna-
tively, one could employ a potential well big enough to accom-
modate many quasiparticles, and one could measure the jump
in charge each time a new quasiparticle enters the well.

Figure 4. Antidot geometry. Charge tunnels between the upper and
lower edges through the edges of an antidot (gray disk) where the
charge is depleted. Purple area is occupied by electrons in an FQH
state.

In practice, however, an absolute measurement of the local
electric charge is dif!cult. It is much easier to measure val-
ues of the varying gate voltage or other parameters where the
quasiparticle enters, and to calculate the quasiparticle charge
based on the spacing between successive charge jumps. Even if
discontinuities in the accumulated charge are largely smoothed
out due to !nite temperature effects or external noise, weak-
ened sinusoidal oscillations in the accumulated charge may
persist, and one could measure their period. Under proper con-
ditions, the dominant factor determining the number of quasi-
particles in a well will be a charging energy, which would be
minimized when the accumulated charge Q is as close as pos-
sible to a value Q∗ that varies continuously with parameters
such as the gate voltage. If charges can only enter in units of the
quasiparticle charge, qm, then the spacing∆Q∗ between charge
jumps will be equal to qm. Furthermore, if one can carry out
the same experiment in the FQH state and an integer quantized
Hall state, and one can be con!dent that the geometry of the
well is the same in both cases, then the value of qm/e is given
by the ratio between the periods of oscillation as a function of
gate voltage in the FQH and integer cases.

3.2.1. Measurements of tunneling through an antidot. The
earliest version [41, 43] of charging spectroscopy involved tun-
neling through an antidot inside a constriction between two
FQH edges (!gure 4). This setting is related to that of inter-
ferometry, addressed in the next section. The electron gas is
depleted inside the antidot and hence an FQH edge forms
around it. Quasiparticles travel through the constriction by
tunneling in and out of that edge. The size of the antidot is
controlled by the depleting gate voltage. The technique probes
how the conductance through the antidot depends on the gate
voltage and the magnetic !eld.

The dependence can be understood from the picture of
quasiparticle orbits, introduced in section 2.2.2. Changes of
the magnetic !eld or the gate voltage result in an orbit peri-
odically crossing the chemical potential. When this happens, a
resonance is seen in the transmission through the constriction.
The period in voltage corresponds to adding or subtracting a
quasiparticle from the antidot. The quasiparticle charge can be
found from the observed period in the voltage and the geomet-
ric capacitance. The latter can be approximately extracted from
the nominal area of the antidot, and can be checked with the
magnetic !eld periodicity of the conductance. The calibration
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may be further checked by comparing with measurements in
an integer quantized state.

To understand the magnetic !eld periodicity, it is nec-
essary to take into account fractional statistics as well as
fractional charge. The allowed orbits are determined by the
Bohr–Sommerfeld quantization rule in terms of the phase,
accumulated by an anyon on a closed orbit. The phase has two
contributions. First, there is an AB phase for a particle making
a circle around the antidot. For an e/3 particle in the Laughlin
state at ν = 1/3, the AB phase is φAB = 2πΦ/3Φ0, where Φ
is the magnetic "ux through the antidot and Φ0 = hc/e is the
magnetic "ux quantum. In addition, each localized quasihole
in the dot contributes the statistical phase −2π/3. Since a new
quasihole is created or destroyed every time the "ux changes
by Φ0 at a !xed charge density, the total phase accumulated on
an orbit is periodic with the period of a "ux quantum. Thus,
in relating the magnetic !eld period to the area of the antidot,
one must take into account the fractional statistics as well as
the fractional charge.

The experimental results [41] are consistent with the theo-
retically predicted charge e/3 at ν = 1/3. Yet, it was argued
that the fractional charge is not the only way to understand
the data [42]. One could instead start with a picture of single-
electron orbits around the antidot and assume that electron cor-
relations ensure that only 1/3 of them are populated. Resonant
transmission would still be observed when an orbit crosses
the chemical potential. This predicts the same periodicity as
the quasiparticle picture. Besides, electrostatic effects may not
be captured by the above single-particle picture (see the next
section).

An additional drawback of this technique is that in order
for tunneling to occur, the antidot must be physically close to
an edge of the sample. Thus one might question whether the
results are necessarily re"ective of the properties of excitations
in the bulk. One might also question whether the gate period
obtained from a transport measurement necessarily re"ects the
period for charge occupancy of the antidot.

It should be noted that a similar technique [46] showed
excitations of charge 2e/3 at ν = 2/3. Very recently, charge
e/3 was reported in an antidot tunneling experiment [47] in
graphene at ν = ±1/3.

3.2.2. Single-electrontransistor technique. Dif!culties in the
interpretation of the antidot data necessitated a different strat-
egy. Thus, later experiments used a different approach [44, 45]:
a single electron transistor (SET), which is sensitive to vari-
ations in the local electrostatic potential, was placed on the
surface of the heterostructure that embeds the FQH liquid, or
on a scanning tip just above the surface. The SET was used to
detect potential jumps when a quasiparticle or quasihole enters
or leaves a local potential well created by "uctuations in the
doping density, which were found to have a physical scale on
the order of 200 nm, large compared to the magnetic length.

The SET technique was !rst developed [69] for 2D het-
erostructures outside the quantum Hall regime and allowed the
spatial resolution of 100 nm. It was extended to studies of the
integer quantum Hall effect in [70, 71].

In a subsequent development, fractional charges in FQH
liquids were reported in [44, 45]. As was explained above, the
entry of new quasiparticles into a well can be controlled with
the gate voltage, and the quasiparticle charge, relative to that
of an electron in an integer quantized state, can be extracted
from the spacing of the jumps as a function of the voltage.
The experimental results [44] are consistent with charge-e/3
excitations at ν = 1/3 and ν = 2/3. The absolute value of the
quasiparticle charge could also be extracted, with lesser accu-
racy, from the SET measurements and were consistent with the
value e/3. In the second Landau level, comparison between
measurements at ν = 5/2 and ν = 7/3 obtained the ratio [45]
qm,5/2/qm,7/3 = 3/4 in agreement with the theoretical expecta-
tion that the charges should be e/4 and e/3 in the two cases.
For a detailed theoretical discussion at ν = 5/2, see [72].

4. Experimental probes of fractional statistics

Fractional statistics were de!ned in terms of phases accu-
mulated by anyons exchanging their positions or running
around other anyons. This makes interferometry [73] the most
direct probe of statistics, since that technique is directly sen-
sitive to phase differences accumulated by particles on differ-
ent possible paths between the same endpoints, which could
depend on whether the difference in paths encloses some other
quasiparticles.

The simplest Fabry–Perot geometry [73] is illustrated in
!gure 5. In the illustrated ideal case, the bulk of the system is
in an almost perfect quantum Hall state, where the Fermi level
falls inside an energy gap of the pure system, but there are a
small number of localized states inside the gap, due to impuri-
ties, which may become occupied or empty as the Fermi level
is varied inside the gap. We have also assumed that there is only
one chiral mode at the sample boundaries, carrying quasipar-
ticles in the direction shown by the arrows, and that tunneling
between opposite edges can take place only in the two constric-
tions. In the weak tunneling limit, two paths connect the source
in the lower left corner and the drain in the upper left corner.
Their phase difference combines an Aharonov–Bohm (AB)
phase in the external magnetic !eld with a statistical phase.
Thus, the technique allows probing both fractional charge
and statistics. Several other geometries have been proposed,
with Mach–Zehnder interferometry [74] attracting particular
interest. Experimental implementation proved dif!cult for all
geometries, but recent years have brought promising results
[37, 40, 75, 76] in the Fabry–Perot approach, and we restrict
ourselves to that geometry in the current section.

Very recently, a somewhat less direct observation of frac-
tional statistics was accomplished with an anyon collider
[77, 78], which will be discussed in section 4.2, below.
Mach–Zehnder interferometry will be discussed in section
7. Several other techniques yield information about statistics,
which we brie"y address in section 8, with the emphasis on
thermal transport and tunneling experiments. Interferometer
experiments designed to reveal effects of non-Abelian statis-
tics near !lling factors ν = 5/2 and 7/2 will be discussed in
section 6.
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Figure 5. Ideal Fabry–Perot interferometer. Current tunnels
between the lower and upper edges at two tunneling contacts. Two
crosses show localized quasiparticles inside the interference loop.

As we shall see below, there are several major challenges
to the interpretation of interferometry data. Some major com-
plications arise due to effects of Coulomb interaction. The
situation also becomes more complicated in states with more
than one propagating edge mode. Most signi!cantly, in most
experiments, the region inside the interferometer is not in the
ideal quantum Hall state described above, which we refer to
as an incompressible state. Rather, the bulk is typically in a
compressible state, where the Fermi level does not fall inside
an energy gap of the pure system [79, 80]. In this case, there
will be a large density of localized quasiparticles or quasi-
holes present in equilibrium, and it costs relatively little energy
to add or subtract one quasiparticle. The result, after thermal
"uctuations are taken into account, is that interference pat-
terns tend to fall into one of two categories, which are gen-
erally described as AB and Coulomb-dominated (CD), as, at
least for integer quantum Hall states, the difference between
the two regimes is determined by the importance of Coulomb
interactions between charges in the bulk and charges on the
interferometer edge, relative to an energy scale set by char-
acteristics of the edge [81, 82]. For FQH states, these labels
may be somewhat of a misnomer, as one predicts in some
cases that behavior of the CD type may be found in the com-
pressible regime, even when the interaction between bulk and
edge is very weak. To emphasize this point we will some-
times use ‘CD-like’ in place of ‘CD’. It should also be empha-
sized that the behavior of an FQH state in an incompressible
regime is different than either the AB or CD behavior in the
compressible regime, as will be discussed below.

4.1. Fabry–Perot interferometry

4.1.1. The ideal case. We shall !rst consider the ideal case
described above. We assume that the electron density drops
rather sharply to zero at the boundary, and there is just a sin-
gle edge mode propagating along the boundary, as indicated
in !gure 5. A quasiparticle propagating on the interferometer
boundary may then be described by a Hamiltonian of the form

Ĥ = Ĥedge

+ [Γ1 exp(iφ1)T̂1 + Γ2 exp(iφ2)T̂2 + h.c.], (23)

where Ĥedge describes charge propagation on the upper and
lower edges, the operators T̂1,2 move a quasiparticle of charge
qm from the lower edge to the upper edge at the two constric-
tions, and Γ1,2 exp(iφ1,2) are the associated tunneling ampli-
tudes. We shall focus on the limit of weak tunneling, where
the current between the lower and upper edges is much less
than the incoming current νe2V/h, where V is the voltage dif-
ference between the lower and upper edges. The quasiparticle
tunneling rate can then be extracted from Fermi’s golden rule,

p = [Γ2
1 + Γ2

2]r0(V , T) + 2Γ1Γ2 cos(φ1 − φ2)r1(V , T), (24)

where r0 and r1 depend on V and the temperature T. Hence
the tunneling current between the lower and upper edges of
the interferometer will be given by

It = qm[Γ2
1 + Γ2

2]r0(V , T)

+ 2qmΓ1Γ2 cos(φ1 − φ2)r1(V , T). (25)

To realize the experimental con!guration illustrated in !gure
5, one can connect a current source at voltage V to the lower
left corner, and attach grounded contacts to the lower right and
upper left corners. The back-scattered current It will then be
equal to the current "owing into the upper left contact.

The phase difference θ = φ1 − φ2 = α− φAB − φs com-
bines two key pieces of information: the quasiparticle charge
qm through the AB phase φAB = −2πqmΦ/eΦ0 and the sta-
tistical phase φs accumulated by a quasiparticle on the trajec-
tory around the anyons, trapped inside the interferometer. Here
Φ = BA is the total magnetic "ux through the area A enclosed
by the paths of the edge states between the constrictions. We
ignore any additional slow dependence of the matrix elements
r0,1 on the magnetic !eld. The constant α will be set to zero
without the loss of generality.

Although the above equations can be justi!ed relatively eas-
ily in the case of a single edge mode in an ideal system with
a sharp edge, there are subtleties involved in applications to
a real system, with a continuously varying electron density
and at least some disorder near the edge. It has been argued
that in this case there will still be a discrete set of propagating
modes at the boundary, which will be embedded in a region of
weakly localized states but will still have a well-de!ne phase
rotation eiθ along the edge [82]. Since the edge state will have a
!nite width, at least as large as the magnetic length, there will
clearly be some ambiguity as to the physical area A enclosed
by the state. However, it is assumed that this ambiguity can
be resolved in such a way that φAB is precisely given by the
expression above.

To get access to the information encoded in θ, an experi-
mentalist needs to look for oscillations in the current as one
varies the magnetic !eld and/or the area of the interferometer.
The area may be varied by applying a voltage Vg to external
gates along the sides of the device. We assume that the area
does not depend on the magnetic !eld. This assumption is not
crucial for the interpretation of the data in the incompress-
ible regime. We will lift it in the discussion of the non-ideal
compressible case.

If no quasiparticles enter or leave the interference region,
contours of constant θ should lie along lines in the plane of |B|
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Figure 6. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Nature. Nat. Phys. [76] © 2020. Conductance
through the Fabry–Perot interferometer oscillates when the
magnetic !eld or the side-gate voltage changes. The AB-type
behavior is combined with phase jumps ∆θ

2π when anyons enter the
interferometer. Gray lines and dashed lines are guides to the eye.

and Vg with slope

dV
dB

= − A
B (∂A/∂Vg)

. (26)

In the case of ν = 1/3, the spacing ∆B between successive
conductivity maxima at !xed Vg should equal 3Φ0/A, while
the spacing ∆Vg at !xed B should correspond to an area
change that contains one electron. At certain values of the
parameters, however, it may be favorable for a quasiparticle to
enter or leave a localized impurity state in the interferometer,
at which point we would expect a jump in phase by an amount
equal to ±2θm, caused by a change in the value of φs. For a
quasiparticle in the Laughlin state at ν = 1/3, it is predicted
that 2θm = 2π/3.

Behavior of this type was observed in recent experiments
[76] by Nakamura, et al, as shown in !gure 6. It is pos-
sible, of course, to ask whether the reported phase jumps
could have been caused by some effect other than fractional
statistics, such as Coulomb interactions between localized
quasiparticles and the conducting states at the interferometer
edges, which could cause a jump in the area enclosed by the
interfering trajectories. (See discussion in subsection 4.1.2.)
However, the sample in these experiments had nearby conduct-
ing planes designed to screen Coulomb interactions as much as
possible. Moreover, it would be peculiar if phase jumps caused
by residual Coulomb interactions would all have the same size
for quasiparticle states localized at different impurity positions
in the sample, and that these phase jumps just happened to
be close to the value predicted by theory. The alternate pos-
sibilities should be further checked and hopefully ruled out by
additional experiments, but assuming that the interpretation is
correct, the results of [76] provide as direct a demonstration as
one could imagine of fractional statistics and a measurement
of the statistical phase of quasiparticles in the ν = 1/3 FQH
state.

In order to prepare a sample where one could enter the
ideal incompressible regime and still see AB oscillations, the

Figure 7. Reprinted !gure with permission from [82], Copyright
(2011) by the American Physical Society. Fabry–Perot
interferometer in the integer quantum Hall regime. The channel that
separates ν = 0 from ν = 1 is fully transmitted. The channel that
separates ν = 2 from ν = 3 is fully re"ected. The channel that
separates ν = 1 from ν = 2 is partially re"ected in the constrictions,
where the charge density is lower than in the center of the device.
Dotted lines show tunneling across the constrictions, applicable to
the case of weak backscattering. Arrow heads, which indicate the
directions of particle propagation, are shown here for the case of a
magnetic !eld pointing toward the viewer.

authors of [76] had to overcome major dif!culties. The chal-
lenge comes from con"icting demands on the interferometer
size imposed by weak Coulomb interaction and strong phase
coherence. The interaction can be suppressed in a large inter-
ferometer, but phase coherence is favored by a small device
size. A key improvement, described in [40, 76] came from
introducing ancillary wells that screen Coulomb forces in the
heterostructure.

It is important to note that the simple results shown in !gure
6 were only observed over a limited range of magnetic !eld.
This is to be expected because outside a certain range, the
Fermi level will no longer be inside the energy gap of the ideal
FQH state. In that case, we can expect that the sample would
fall into the compressible regime described above, where there
will be a large number of quasiparticles or quasiholes inside
the interferometer, with only a small energy barrier to add or
subtract an additional quasiparticle [83].

4.1.2. Interferometer with a compressible bulk. We present
here a brief summary of our current theoretical expectations
for the behavior of a Fabry–Perot quantum Hall interfer-
ometer in the compressible situation, which will apply to
the integer quantum Hall regime as well as to FQH sys-
tems. Although these theoretical predictions have been con-
!rmed in a variety of experiments in the integer regime, the
reader should be warned that there has been little success so
far in observing oscillations of the predicted type in FQH
states.

Consider the example from the integer quantized Hall
regime, illustrated in !gure 7. The bulk of the system is in a
state with a quantized Hall conductance given by ν = 3. The
LL !lling factor f near the center of the sample could be any-
where in the range 2.5 < f < 3.5; deviations from the ideal
value of f = 3 are accommodated by a !nite density of local-
ized electrons in regions with f > 3 and localized holes for
f < 3. Near edges of the sample, the electron density drops
to zero, and f drops off accordingly. In our somewhat sim-
pli!ed model, we assume that there are quantized Hall strips
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with quantum numbers ν = 2, 1 and 0 in the edge region, with
a single propagating edge mode separating each region. The
locations of the propagating modes should fall roughly where
the electron density is such that the local Landau-level !ll-
ing factor is 2.5, 1.5, or 0.5. For situation illustrated in the
!gure, the density in the constriction is supposed to be slightly
less than f = 2. The edge state separating ν = 2 and ν = 3 is
totally re"ected outside the constriction, the edge state sepa-
rating ν = 0 and ν = 1 is totally transmitted, while the edge
state separating ν = 1 and ν = 2 is partially transmitted. It is
this last mode that is relevant in an interference experiment.

The situation in !gure 7 can readily be extended to FQH
states. For example, if we interpret the labeled !lling factors as
effective !llings for composite fermions, with two "ux quanta
attached to each electron, the Hall states become quantized
states with ν = 1/3, 2/5 and 3/7. More generally, we shall
assume that there is a single partially-transmitted edge state,
which separates inner and outer regions with quantum numbers
ν in and νout, with ν in > νout. We shall assume that the tunneling
processes occur at one well-de!ned point within each constric-
tion, and we shall de!ne the interference area AI as the area
enclosed by the interfering edge state between these points.
We also de!ne qin and qout as the charges of the fundamental
quasiparticles in quantized Hall states with ν in and νout. For the
fractional case, we shall con!ne our discussion to the situation
where ν in corresponds to a Jain state in the bottom half of the
lowest LL, so we may write

νin =
p

2ps + 1
, qin =

e
2ps + 1

, (27)

where p and s are positive integers. The values of νout and qout
are obtained by replacing p by p− 1 in the above formulas.
The situation in !gure 7 corresponds to p = 2.

Next we de!ne NL as the net number of quasiparticles
of charge qin inside the area AI. The number NL takes into
account the total excess charge in area, including charges in
regions with ν > ν in as well as positive or negative quasiparti-
cles localized at density inhomogeneities within the ν in region.
Speci!cally, it is related to the total electric charge Q inside the
interference area AI by

Q = NLqin − AIνineB/Φ0. (28)

If we assume that the dominant tunneling processes at the con-
strictions involve quasiparticles with charge qin, then the inter-
ference phase seen by the tunneling particles will be given by

θ = −2NLθin + 2πBAIqin/eΦ0, (29)

where θin is the statistical phase associated with the quasipar-
ticles of charge qin, given by [16]

θin = π

[
1 − 2s

2ps + 1

]
. (30)

We remind the reader that our sign conventions assume that the
!eld points along the −z direction, and B = |B| is the mag-
nitude of the !eld. The phase θin would have had the oppo-
site sign if the magnetic !eld had been chosen to be in the

positive z direction. Note that the statistical phase is the same
for a particle and its antiparticle.

A key assumption is that NL is restricted to take on inte-
ger values (positive or negative), because the localized states
inside the interfering edge are isolated from the states outside
and from the edge itself [82]. This does not mean that NL is
frozen in time, only that it is constant on the time scale for
a quasiparticle in the edge state to move along the length of
the interferometer. We assume that on the longer laboratory
time scale, charges can hop readily from one localized state to
another and that occupations will take on an equilibrium dis-
tribution determined by the temperature, the magnetic !eld,
and any voltages applied to the gates and the current contacts.
From this point of view, the entire region inside interfering
edge state, as well as the region surrounding the edge state,
should be considered as compressible in most cases [79, 80].

In contrast, the charge on the edge state can vary rapidly,
because it is connected directly to the edge states outside
the interferometer, and we consider here a situation where
the backscattering probabilities at the constrictions are small.
Thus, the edge charge is not quantized, and the area AI, related
to it by equation (31) below, may be considered to be a
continuous variable.

We now de!ne an energy function E(NL, AI), which
describes the free energy of the system after all other vari-
ables have been integrated out [82]. We assume that the time-
average interference current measured in an experiment is pro-
portional to the thermodynamic average of Re(eiθ), weighted
by the factor e−E(NL,AI)/T .

It is convenient to introduce another variable δnL, so that
we can write

δnI ≡ −(νin − νout)B(AI − Ā)/Φ0, (31)

δnL ≡ NL
qin

e
− νin

BĀ
Φ0

− Q̄, (32)

where Ā and Q̄ are quantities chosen such that δnL and δnI

would be zero if we were to minimize E without the con-
straint that NL be an integer. The values of Ā and Q̄ should
be smooth monotonic functions of any applied gate voltages,
with perhaps a weak smooth dependence on B. The variable
δnI describes charge "uctuations on the interfering edge, while
δnL is determined by "uctuations in the interior. Then for small
"uctuations in the variables, we can expand E in the form

E =
KL

2
δn2

L +
KI

2
δn2

I + KILδnLδnI, (33)

where the constants KL, KI and KIL depend on the geome-
try and are largely determined by the Coulomb interactions
between charges. Equation (33) contains only the effect of
long-range Coulomb forces and no contribution from the
quasiparticle gap since the random potential creates an essen-
tially continuous spectrum for anyons.

At T = 0, there will be no thermal "uctuations, and the
phase factor eiθ will exhibit jumps at discrete values of the
parameters, where NL increases or decreases by one. At !nite
temperatures, "uctuations become important, and one rapidly
enters a regime where one or two Fourier components are
dominant in a plot of the thermal expectation value 〈eiθ〉 as a
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function of the parameters B and Vg. The allowed contributions
have the form [82]

Dm exp
{

2πi
[

m
(

BĀ
Φ0

)
− Q̄(qin − me)

eνin

]}
, (34)

where m are integers restricted to values of form

m = −νoute
qout

+ g
νine
qin

, (35)

where g is an integer. The amplitudes Dm fall off exponentially
with temperature, |Dm| ∝ exp(−2π2T/Em), so typically only
the component with largest Em is visible. An explicit expres-
sion for Em in terms of the parameters of the model is given by
equations (20) and (27) of [82]. According to those formulas,
the largest value of Em occurs when g is the closest integer to
−∆θ/2π, where

∆θ = −2θin +
2πq2

in

e2(νin − νout)
KIL

KI

= 2π
(

2sqin

e
− 1 +

qin

qout

KIL

KI

)
(36)

is the jump in interferometer phase that would occur if NL is
increased by one at T = 0. The favored value of g corresponds
to the Fourier component of the interference oscillations that
is least sensitive to thermal "uctuations in NL and AI at higher
temperatures.

The case g = 1 has been termed the AB regime, while
the case g = 0 has been termed the CD regime. For inte-
ger quantum Hall states, where s = 0, the AB regime occurs
when KIL/KI < 1/2, so that the coupling between edge and
bulk is relatively weak, while the CD regime occurs for
1/2 < KIL/KI < 3/2, where the coupling is relatively strong.
For a fractional state of the form (27), there will again be a CD-
like regime with g = 0, and at least in principle, an AB regime
with g = 1. However, the value of KIL/KI separating the two
regimes will be < 1/2, and the AB regime may be dif!cult to
access. In fact, for the Laughlin states, with p = 1 and s ! 1,
one is in the CD-like regime, with g = 0, even for KIL = 0, so
the traditional CD designation is actually a misnomer in this
case. [To reach the AB regime at ν in = 1/3, one would actu-
ally need an attractive interaction between the edge mode and
localized charges, with −7/2 < (KIL/KI) < −1/2.] For inte-
ger states and for Jain states of the form (27), the dominant
term in the AB region has m = 1, while in the g = 0 CD-like
region, it has m = 1 − (ν ine/qin) = 1 − p.

According to (34), if the gate voltage is held !xed, and
if one can assume that Ā and Q̄ are insensitive to the mag-
netic !eld, then the oscillations in conductance should have a
period in the magnetic !eld given by ∆B = Φ0/|m|A. In the
AB regime, where m = 1, the "ux period is Φ0 for all the
states under consideration. By contrast, in the CD regime, the
period depends on the state, and it will be a submultiple of Φ0

for states where there are two or more fully transmitted edge
states, such as ν in = 3 or ν in = 3/7.

If one !xes B and varies Vg, one will generally see an oscil-
lating conductance with a period that will depend on dĀ/dVg

and dQ̄/dVg. A color plot of the conductance oscillations as a

function of B and Vg will lead to a series of parallel stripes,
similar to those seen in !gure 6. It was argued in [82] that
at least for integer quantized Hall states, lines of equal phase
should have a negative slope, similar to the stripes in !gure
6, in the AB regime, but they should have a positive slope in
the CD regime, provided there is at least one fully transmitted
edge mode. Fabry–Perot experiments in the integer quantized
regime have seen both types of behavior, depending on the
details of the sample [38, 84]. Also, in certain samples, the two
types of stripes were seen to coexist, leading to a checkerboard
pattern of diamond shapes in the color plot. However, the sit-
uation is more complicated in the FQH case. If we de!ne the
measured phase θ̃ as arg(〈eiθ〉), then following equation (34),
∂θ̃/∂B will again have the same sign as m. However, for FQH
states, the sign of ∂θ̃/∂Vg can depend on microscopic details.

For the case of ν in = 1/3 and νout = 0, where there are no
fully-transmitted edge modes, one has m = 0 in the CD-like
regime, as noted above. Then the conductance will not show
oscillations as the magnetic !eld is varied, and stripes of equal
phase will be horizontal in the color plot. Behavior of this type
was indeed observed in the experiments reported in [76] for
magnetic !elds on outside of the range shown in !gure 6. We
remark that this result differs from the original prediction of
[83] that there should be a "ux period of Φ0 in this region, as
one would expect in the AB compressible regime; however,
that prediction has now been corrected.

Note that in the compressible domain, FQH states in a
higher Landau level will have different "ux periods than the
corresponding states in the spin-polarized lowest Landau level.
For example [82], for a state at ν = 7/3, which we assume
to consist of a Laughlin liquid at ν = 1/3 on top of an inte-
ger quantized Hall state with ν = 2, we would have ν in = 7/3
and νout = 2, so the allowed values of m in (34) will be equal
to−2 + 7g. As at ν in = 1/3, we expect that the dominant term
should have g = 0. Experimental results at ν = 7/3 by Willett
and collaborators [85] showed a "ux period Φ0/2, consistent
with predictions for the compressible regime with m = −2.
However, the dependence on gate voltage was not reported in
this reference.

In another experiment at ν = 7/3, An and collaborators
[86] reported a gate period with phase jumps, appearing in the
form of telegraph noise, which was consistent, at least quali-
tatively, with what one might expect for a state in the incom-
pressible regime. However, the "ux period was not reported
at this !lling fraction, nor was there a reported calibration of
the amount of charge entering the interferometer in one gate
period.

Motivated by the experiments of [46], Schreier et al [87]
have analyzed interference effects to be expected in a geometry
where there is tunneling through an antidot inside a constric-
tion. In particular, they considered a situation where there are
two edge states around the antidot, and they found that the sys-
tem was likely to be in an AB regime for an FQH state for the
same geometry where one would observe CD behavior in the
integer case. They advanced this as an explanation for the dif-
ferent behaviors observed in [46] between bulk !lling factors
ν = 2/3 and ν = 2.
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Figure 8. Schematic of a constriction with (a) weak forward
scattering and (b) no scattering. Dashed line shows electron
tunneling.

It should be cautioned that our discussion of the
Fabry–Perot interferometer ignored the possible effects of tun-
neling between different edge modes along the perimeter of the
interferometer. While this has been justi!ed by experiments in
the integer regime in many cases, it may be more questionable
for FQH states, particularly when there are edge modes propa-
gating in two directions. Inter-mode scattering may contribute
to decoherence effects, which may be a reason why interfer-
ence oscillations have proved much more dif!cult to observe
for FQH states than for integer states.

The analyses which led to the results described above, for
both the AB and CD regimes in the FQH case with a com-
pressible bulk, certainly made use of the property of fractional
statistics. More generally, if one accepts that the interfering
particles have fractional charge, then one needs to invoke frac-
tional statistics to avoid "ux periods which are integer multi-
ples of Φ0. However, the "ux periods predicted above for the
Jain states are identical to the ones predicted for integer states
in both the AB and CD regimes, where the tunneling parti-
cles are electrons. Consequently, it might be hard to rule out
the possibility that the interfering particles in an experiment
[88] are electrons rather than fractionally charged quasiparti-
cles. For this reason, observations of the predicted "ux period
in either regime might not be accepted as a convincing direct
observation of fractional statistics.

4.1.3. Quasiparticle charges from Fabry–Perot experiments.
Measurements using the Fabry–Perot geometry can be used
to measure the charges of quasiparticles in various quantized
Hall states in either the CD or AB regime. Using expression
(34), if the values of dĀ/dVg and dQ̄/dVg are known, one can
predict the oscillation period ∆Vg when B is held !xed. In the
CD regime, this period corresponds to the addition of a charge
equal to qout to the interior of the interferometer.

Importantly, although (34) was derived in the regime of
weak backscattering, the same result obtains, for a given
partially-transmitted edge state, in the regime of strong
backscattering, where the partially transmitted edge state is
almost totally re"ected at the constrictions, and there is only
weak forward scattering. (See !gure 8(a).) In this limit, the
area enclosed by the interfering edge forms an isolated droplet
of material in a quantum Hall state with quantum number ν in,
embedded in a region with quantum number νout. Charge can
then enter or leave the droplet only in units of qout, and the
total charge in the droplet must be an integral multiple of this
unit. If Vg is varied, periodic oscillations will occur in the
amplitude for forward tunneling through the constriction, as
the quantized charges enter or leave the droplet.

In typical experiments, the !lling factor fc in the constric-
tions and the !lling factor in the bulk are varied simultaneously
by changing the magnetic !eld, while the overall electron den-
sity and gate voltages are held constant. A region of weak
forward scattering should occur when fc is slightly above a
rational value νc that corresponds to a well-established quan-
tized Hall state. (This will obtain when the magnetic !eld is
slightly lower than the value at which fc = νc.) In this case,
we have νout = νc, so the charges measured in the CD regime
will be that of the elementary quasiparticles in the region of
the constriction. Figure 8(a) shows a case where νc = 2 and
fc ≈ 2.2. By contrast, the constrictions shown in !gure 7 are
in a regime of weak backscattering, where fc is slightly below
νc, meaning that the magnetic !eld is slightly higher than the
value where fc = νc. (In !gure 7, we have νc = 2 and fc < 2.)
In such cases, we have νc = ν in, so if νc is a fraction, the charge
qout measured in the experiment will differ from the elemen-
tary charge in the constriction. Note that the partially re"ected
edge states are not the same in !gures 7 and 8(a).

In a well-made constriction, as parameters are varied, there
will be intervals where fc is suf!ciently close to some quan-
tized value νc that there is neither appreciable forward nor
back scattering. (See !gure 8(b).) In this regime, the measured
Hall resistance of the device and the two-terminal conductance
will sit on a quantized Hall plateau, where no interference
oscillations will be seen.

Quasiparticle charge measurements in the CD regime
obtained in [38] were consistent with the expected anyon
charges e/3 and e/5 at ν = 1/3 and ν = 2/5 respectively.
Charge ≈ e/3 was reported for ν = 1/3, 2/3, 4/3, and 5/3
in [39]. A recent Coulomb blockade experiment [89] reveals
charges e/3 at ν = 1/3 and 2/3.

As mentioned above, the color plots of conductance as a
function of B and Vg presented in [76] showed a series of hor-
izontal stripes, for !elds outside the range of incompressible
bulk, which is what one predicts for the CD regime when the
bulk is in a compressible state on the ν = 1/3 plateau and
the !lling in the constrictions is less than that of the bulk.
Moreover, the observed gate period ∆Vg is consistent with the
predicted period in the CD regime, since qout = e.

Quasiparticle charge can also be obtained from AB oscil-
lations in the incompressible bulk regime shown in !gure 6,
as was done in [40]. Assuming the interference area A is
known, if one can neglect Coulomb coupling between the
edge and the bulk, the charge of the interfering particle can
be extracted from the magnetic-!eld period in an interval
where no localized quasiparticles enter or leave, by use of
the equation qmA∆B = eΦ0. Alternatively, if the dependence
of A on gate voltage is known, the charge may be extracted
from the gate period using qmB∆Vg = eΦ0/(∂A/∂Vg). The
authors of [40] used the second method to extract the value
of qm at ν = 1/3, assuming that value of (∂A/∂Vg) was
unchanged from the value at ν = 1, and they obtained the
value qm = 0.29e, in good agreement with the expected value
e/3. On the other hand, measurements of the same type at
ν = 2/3 obtained a result of 0.93e, suggesting that the tun-
neling charges in that case might be electrons rather than
fractionally charged quasiparticles.
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Using the model de!ned by equation (33), we can address
the effects of the Coulomb interactions, omitted above and
in section 4.1, on interferometer experiments in the incom-
pressible region. If we continue to assume that the background
parameters Ā and Q̄ are insensitive to the magnetic !eld, then
modi!cations of the interference area AI are controlled by the
coupling constants KIL and KI. In this case one !nds that the
jump in the interferometer phase on entry of a quasiparticle
will be given by equation (36) while the magnetic !eld period,
between jumps, will be renormalized to

∆B =
eΦ0

qinĀ

[
1 − KIL

KI

νin

(νin − νout)

]−1

. (37)

The slope of lines of equal phase on the plane of B and
Vg should not be affected by a non-zero KIL. The distinct
jumps predicted by (36) should be visible in the incompress-
ible regime at temperatures much higher than in the compress-
ible regime, in so far as the energy to create a quasiparticle
is typically much higher than the scales of charging energies,
KI and KL.

The claim in [40, 76] that Coulomb coupling may be
neglected in their sample is supported by the fact that the inter-
ference stripes they observe at the integer !lling ν = 1 are
consistent with what one would expect in the incompressible
regime on neglecting the correction proportional to KIL/KI in
(37), or in the AB regime if the bulk is compressible.

Note that in the incompressible region, one !nds only a
gradual transition between the regimes of weak and strong
Coulomb interaction, as the predictions for ∆θ and ∆B vary
continuously as a function of KIL/KI. This is in contrast to
the compressible region, where the transition between AB and
CD-like regimes is marked by simultaneous manifestation of
two distinct periodicities, rather than a single intermediate
period.

We conclude this section by mentioning puzzling behav-
ior [90, 91] observed in a geometry with a ν = 1/3 channel
going around a ν = 2/5 island, where the transport data were
interpreted as showing a magnetic-!eld period of 5Φ0 and a
period of in the interferometer charge of 2e. The explana-
tion advanced by the experimenters supposed that the enclosed
ν = 2/5 region was in a compressible state, where e/5
quasiparticles could readily enter or leave, so as to keep the
electron-density and area !xed as the magnetic !eld was var-
ied. However, according to the analysis presented above, in a
compressible region, regardless of whether one was in the AB
regime or the CD regime, any observed "ux periods should be
Φ0 or a submultiple of it, not a period larger than Φ0. (See [82,
92–94] for further discussions.)

A possible resolution of the puzzle might be obtained if the
quantum dots in these experiments were actually measured in a
magnetic !eld interval where the interior state was essentially
incompressible, as in the central magnetic-!eld region of [40,
76]. In that case, if the interfering quasiparticles have charge
e/5, one would naturally expect to !nd a "ux period of 5Φ0 and
a gate period corresponding to the addition of two electrons.
It should be noted, however, that the varying gate employed in
these experiments was not a side gate but rather a back gate,

Figure 9. Anyon collider. The currents from sources S1 and S2 give
rise to dilute beams of quasiparticles from QPC1 and QPC2 to
cQPC, where anyons collide. The correlations of the currents in
drains D1 and D2 are determined experimentally.

separated from the sample by the thickness of a sapphire sub-
strate, which may complicate the analysis. In any case, a more
detailed analysis, and perhaps further experiments, are needed
to resolve these issues.

4.2. Anyon collider

It is known that the scattering of identical fermions differs from
the scattering of identical bosons with the same interaction
potential. This suggests the use of anyon collisions to probe
fractional statistics.

An anyon collider at ν = 1/3 was implemented in [78] fol-
lowing the proposal from [77]. The setup is illustrated in !gure
9. Charge from two sources arrives along the edges to two point
contacts QPC1 and QPC2, where tunneling gives rise to two
dilute beams of anyons propagating along the edges toward
cQPC. Anyons, arriving from the two sides to that contact, col-
lide. This affects the currents, collected in the two drains, D1
and D2. If the anyons were fermions, the Pauli principle would
prohibit the two arriving anyons from ending up on the same
side of cQPC. In other words, the two fermions would block
each other from tunneling through cQPC. Mathematically, this
would result in an absence of correlations between the two
drain currents. Bosons are known to bunch, and this would
result in non-zero correlations. Laughlin anyons are intermedi-
ate in their properties between bosons and fermions. Thus one
might expect some intermediate form of current correlations
for a Laughlin liquid.

[77] made speci!c predictions for various Laughlin liq-
uids, and the experimental results, obtained at ν = 1/3, were
found to be in excellent agreement with the theory. How-
ever, there were other ingredients in the theory in addition to
the assumption of fractional statistics. The theory employed
a speci!c model of the edge Hamiltonian Ĥedge, given by
equation (23). The Hamiltonian is important because a quasi-
particle tunneling between two edge states will leave behind
trace in excitations along the edges, which can affect the
amplitude for tunneling of a second quasiparticle. Indeed, it
is expected that the form of the current correlations may be
altered if there is reconstruction at the edges of the sample.
The results of the anyon collider experiment, while very inter-
esting, would therefore seem to be a less direct measurement of
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fractional statistics than those obtained from the Fabry–Perot
experiments.

[95] discusses what information can be extracted from
!nite-frequency noise in an anyon collider. Several other
setups have been proposed theoretically to obtain signatures of
fractional statistics from other current correlations [96–102],
but these have not yet been realized experimentally.

Another type of correlation experiment, which requires the
simultaneous presence of two identical particles and which
depends on their mutual statistics is the Hanbury-Brown Twiss
interferometer. A beautiful experiment of this type, demon-
strating the interference between two electrons from indepen-
dent sources injected into a quantum Hall edge state at integer
!lling, was reported in [103]. Results that might be expected
for a similar experiment with FQH edge states have been
explored theoretically in [97, 104, 105].

5. Non-Abelian statistics

In our previous discussion of Abelian anyons, we focused on
the statistical angle acquired during anyon braiding, that is, in
a process in which anyons exchange their positions or run full
circles around other anyons. By measuring braiding phases,
accumulated by various anyon types on a circle around a local-
ized anyon, the localized anyon could be identi!ed. This was
the idea behind the interferometry technique in section 4.1.

Two other important processes which characterize the topo-
logical behavior of anyons are fusion and splitting. In fusion,
two anyons combine into a single excitation. Splitting is the
reverse process. These processes will be of particular impor-
tance in our discussion of non-Abelian anyons.

In the Laughlin states [7] at ν = 1/m, fusion is trivial.
Anyon types are fully determined by anyon charges. Combin-
ing two anyons of charges q1 and q2 produces an anyon of
charge q1 + q2. As an example, consider the ν = 1/2 liquid
of charge e bosons [106, 107]. The elementary quasiparticles
have charge e/2 and are semions, that is they have statistical
angle θm = π/2, half that of a fermion. A semion is a non-
local or topologically nontrivial object. This means that there
is no way to create an isolated semion. Semions can only be
created in pairs. Two semions fuse into a boson, which is a
topologically trivial object that can be created locally and can-
not be detected with interferometry. We say that it belongs
to the vacuum topological sector. Similarly, adding any num-
ber of bosons to a semion does not affect the outcome of an
interferometry experiment and does not change the topologi-
cal sector of the excitation. If we label the vacuum sector with
1 and the semion sector with s, we get the following fusion
rules for the particles from the two sectors:

1 × 1 = 1, 1 × s = s, s × s = 1. (38)

This is an example of Abelian statistics. More complicated
states with Abelian statistics, such as Halperin’s nnm liq-
uids [14], allow neutral anyonic excitations. Thus, anyons of
the same electric charge may belong to different sectors ai.
Still, the sectors form an Abelian group with the fusion rules
ai × a j = ak(i, j), where k is uniquely determined by i and j.

In systems with non-Abelian statistics, we encounter sit-
uations where two given anyons can fuse into excitations
from more than one topological sector. We shall be partic-
ularly interested in systems with the simplest type of non-
Abelian statistics, known as Ising statistics, which emerges
in the exactly solvable Kitaev model [108] of a magnet on a
hexagonal lattice and is relevant for vortices in p-wave super-
conductors [109] as well as FQH states at half-integer !llings
[110]. Systems with Ising topological order have three topo-
logical sectors: vacuum 1, fermion ψ, and Ising anyons σ.
Fusion with the vacuum has no effect on the topological sector.
The remaining three fusion rules are

ψ × ψ = 1, σ × ψ = σ, σ × σ = 1 + ψ. (39)

The last rule means that the fusion of two Ising anyons may
yield a boson or a fermion. If the two σ particles are far apart,
the two fusion channels cannot be distinguished by local mea-
surements and are present at the same local quantum numbers
of the two anyons. The information about the fusion channel
is stored globally. This serves as the foundation for the idea of
topological quantum computing [111].

As an example, consider two vortices in a spinless two-
dimensional superconductor with pairing of the form px + ipy
[109]. Each vortex binds a Majorana zero mode described by a
real fermion Ψ1,2 = Ψ†

1,2. The two real fermions combine into
a single complex fermion Ψ = Ψ1 + iΨ2 that can populate a
single energy level. The states with the !lled and empty level
differ by their fermionic parity but cannot be distinguished
locally by looking at a single vortex. Thus, we can think of
the vortices as σ-anyons and the !lled and empty level as the
two fusion channels from equation (39).

A system with conserved fermionic parity cannot move
between the two fusion channels, but the same physics is
present in a parity conserving system with four Ising anyons.
The trivial total parity can be obtained in two locally indistin-
guishable ways: anyons 1 and 2 fuse to vacuum and anyons 3
and 4 fuse to vacuum, or alternatively, anyons 1 and 2 fuse to
fermion and anyons 3 and 4 fuse to fermion. A system of 2n
Ising anyons has 2n−1 locally indistinguishable states.

5.1. Basic principles

The theory of fusion and braiding was dubbed the algebraic
theory of anyons in [108], which is the approach we follow.
In pure mathematics, fractional statistics correspond to modu-
lar tensor categories [112]. The same mathematical structures
emerge in topological !eld theory [113] and in conformal !eld
theory [114] (CFT). This re"ects the physics of the problem:
topological !eld theories capture some of the bulk physics
in topological liquids; we will see below that CFT captures
universal aspects of the edge physics. The complete topologi-
cal classi!cation of a system with non-Abelian statistics goes
beyond the rules stating which sectors can fuse into which oth-
ers, but will depend also on various amplitudes associated with
fusions and braidings. For example, one !nds [108] that that
there are eight distinct topological orders for systems obeying
the fusion rules (39).

The two-dimensional nature of the problem does not make
any difference for fusion. We will follow the convention of
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placing all anyons on a line. Braiding exchanges anyon posi-
tions on that line while fusing and splitting changes the number
of the occupied sites. We also ignore all local quantum num-
bers of the anyons and focus solely on topologically distinct
states. Thus, we consider just one anyon state in each topo-
logical sector. In other words, we introduce a one-dimensional
Hilbert space for each anyon type.

We will use diagrammatic language to speak of fusion and
braiding. The key objects are the splitting operators [ψi]ab

c and
their Hermitian conjugate fusion operators, illustrated below:

We use the convention that the time axis runs up. The right
diagram suggests moving two anyons a and b into the same
point, where they fuse into c, but a different way of thinking is
often useful. We can assume that particles do not move and the
fusion and splitting operators are just linear maps between the
Hilbert space of the combined system of the two anyons and a
one-dimensional space.

The most general fusion rule is

a × b =
∑

c

Nc
abc, (40)

where the fusion multiplicities Nc
ab show the number of inde-

pendent ways to fuse anyons a and b into anyon c; in other
words, Nc

ab is the dimension of the Hilbert space Vab
c of the

states of the two anyons with the total topological charge c.
All fusion multiplicities equal 1 for the Ising statistics and for
any Abelian statistics. Assuming the normalization

(41)

where j, k = 1, . . . , Nc
ab, we decompose the identity operator

as

(42)

One of the anyon sectors is vacuum 1, and the fusion multi-
plicity with vacuum is always Na

a1 = Na
1a = 1. Also, N1

ab can
only be 0 or 1. It is always possible to add a vacuum line to
any diagram.

Calculations with diagrams often involve F-moves

(43)

where Fabc
u are matrices with the indices x and y and additional

numerical indices, if the fusion multiplicity exceeds one in any

node of the diagram. The diagrams on the right and on the
left represent two compositions of splitting operators. A gauge
freedom exists in the choice of the F-symbols and other topo-
logical data of an order. See [115] for numerous examples of
such data. For Abelian statistics the F-matrices are 1 × 1, i.e.,
just numbers. For example, for semions, Fsss

s = −1 and all the
other F-symbols are 1 in the gauge [115] we use. For the Ising
statistics with the braiding rules (47), the following F-symbols
are non-trivial:

[
Fσσσ
σ

]
rs =

(
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

)
, (44)

[
Fσψσ
ψ

]

σσ
=

[
Fψσψ
σ

]
σσ

= −1, (45)

where r, s = 1,ψ with r = s = 1 in the upper left corner of the
matrix.

Thinking of fusion operators as linear maps naturally leads
to an in!nite number of associativity relations such as the
pentagon equation (!gure 10), which tells that the two upper
F-moves in the diagram are equivalent to the three lower
ones. It can be proven that any other ‘obvious’ relation fol-
lows from the pentagon equation and the hexagon equation
(!gure 11).

Braiding is described by the unitary operators called R-
symbols:

(46)

The statistical phase, accumulated at the exchange of a
and b, is unaffected by local operators acting on each of
the anyons. As a consequence, lines can be moved over
crossing points of other lines. For example, splitting b into
two anyons below or above the crossing point in equation
(46) produces equivalent diagrams. For the semion topo-
logical order, the only nontrivial R-symbol describes the
exchange of two semions: Rss = i. For Ising anyons with the
fusion rules (39), eight topological orders are known with
different braiding rules [108]. In this subsection we con-
sider one example, where the non-trivial R-symbols depend
on the fusion channel of the excitations in the following
way:

Rσσ
1 = e−iπ/8, Rσσ

ψ = e3iπ/8,

Rσψ
σ = Rψσ

σ = e−iπ/2, Rψψ
1 = −1. (47)

A combination of F-moves and R-moves generates the
hexagon equation (!gure 11): the composition of the two R-
moves and one F-move in the upper part of the diagram is
equivalent to the composition of the two F-moves and one R-
move in the lower part of the diagram. A similar equation holds
for R−1-moves. The R- and F-symbols satisfy the equations in
!gures 10 and 11 and form a key part of the data that de!nes
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Figure 10. Pentagon equation.

Figure 11. Hexagon equation.

a topological order. Each particle a has a unique antiparti-
cle ā for which the vacuum 1 is a possible outcome of the
product a × ā. The antiparticle of a Laughlin anyon of charge
qm carries the opposite electric charge −qm. In the Ising and
semion orders, each particle is its own antiparticle. Since the
fusion multiplicity with an antiparticle to the vacuum has to
be 1, the following diagram is de!ned up to an arbitrary phase
factor κa:

(48)

where the quantum dimension da describes the scaling of the
number of states ∼ da

N of N 1 1 anyons a. All quantum
dimensions are 1 for Abelian statistics. For the Ising order,

one quantum dimension is nontrivial: dσ =
√

2 in agreement
with 2n−1 states for 2n anyons. The quantum dimensions are
the same for a particle and its antiparticle. A useful identity
relates quantum dimensions with fusion multiplicities:

∑

c

Nc
abdc = dadb. (49)

If a = ā, the phase factor κa in equation (48) is no longer
arbitrary and is known as the Frobenius–Schur indicator.
This invariant equals ±1 and indicates the breaking of the
spin-statistics correspondence at κa = −1. (See equation (53)
below.). The indicator is 1 for all excitations of the Ising liq-
uid with the braiding rules (47), while κs = −1 in the semion
order.

It proves pro!table to rede!ne the normalization of the
splitting and fusion operators (41) in terms of quantum
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dimensions:

(50)

The resulting diagrammatic technique has a nice feature that
topologically equivalent diagrams are equal. For example, for
κa = 1,

(51)

Negative Frobenius–Schur indicators are accounted for by
decorating lines with arrows. We will ignore this complica-
tion since the Ising order with the R-symbols (47), which is of
primary interest for this review, has trivial κa. With the new
normalization, a closed non-self-intersecting loop from a par-
ticle line and an antiparticle line equals the quantum dimension
of the particle.

Braiding properties can largely be deduced from a single
number called the topological spin for each anyon type:

(52)

The topological spin is a root of unity [116]. For vacuum,
θ1 = 1. For semions, θs = i. For the anyons in Ising liquids,
θψ = −1 and θσ = exp(iπ/8).

Naively, the topological spin de!nes the statistical phase
at the exchange of a particle with its antiparticle, but this
only holds in some cases. First of all, the statistical phase of
non-Abelian anyons depends on their fusion channel. Second,
even in the vacuum fusion channel, the standard spin-statistics
relation may not hold. In particular, for a = ā,

Raa
1 = θ∗aκa. (53)

On the other hand, interferometry involves the phase φab
c accu-

mulated by an anyon a on a full circle around b assuming that
a and b fuse to c. This phase depends only on the topological
spins:

exp(iφab
c ) =

θc

θaθb
. (54)

The proof of this expression illustrates the power of the dia-
grammatic approach and immediately follows from the dia-
grammatic identity in !gure 12.

5.2. Edge modes

As previously mentioned, a boundary between a gapped FQH
liquid and the vacuum necessarily carries gapless modes [9].
The simplest example is the !lling factor ν = 1 for non-
interacting spinless electrons. Far from the boundary, all elec-
trons occupy degenerate states of the lowest Landau level at the
energy !ωC/2, where ωC is the cyclotron frequency. Assume
that the con!ning potential near the edge changes slowly on

Figure 12. The two lines of each diagram represent anyons a and b.
The left diagram can be interpreted as a double line, representing
anyon c.

the scale of the magnetic length
√
!c/eB. Then the energy

of a state localized at the distance x from the boundary is
E(x) = !ωC/2 + V(x), where V(x) is the con!ning potential.
The boundary x0 of the occupied electron states corresponds to
E(x = x0) = EF, where EF is the Fermi energy. Gapless excita-
tions are localized at x ≈ x0. The excitations are chiral, that is,
they propagate only clockwise or counterclockwise, depend-
ing on the direction of the magnetic !eld. That direction is
called downstream.

In the simplest free-fermion model, the Lagrangian density
of the low-energy mode is

L1 = iψ†(∂t + v∂x)ψ, (55)

where v is the mode velocity, and ψ is a fermionic Grass-
mann !eld. It is often convenient to bosonize [25] the
above Lagrangian density, substituting ψ ∼ exp(iφ), where
−e∂xφ/2π is the linear charge density:

LB = − 1
4π

∂xφ(∂t + v∂x)φ. (56)

A closely related chiral Luttinger liquid model [117] is often
used to describe Laughlin states at ν = 1/(2n + 1):

L2n+1 = − 1
4νπ

∂xφ(∂t + v∂x)φ, (57)

where the electron operator ψ ∼ exp(iφ/ν). Generalizations
of this model are broadly applied to describe edges of Abelian
FQH liquids. Besides a downstream charge mode, additional
modes are generally present, whose directions can be both
downstream and upstream [117]. The additional modes are
typically charge–neutral, due to effects of impurity scattering
and/or long-range Coulomb interactions.

The chiral Luttinger liquid model (57) misses complicated
physics due to the long-range Coulomb interaction and often
fails to quantitatively describe the data [59, 118–120]. One
effect overlooked by the model is edge reconstruction [121].
It was shown theoretically [79] and con!rmed experimentally
[122] that a realistic FQH edge in GaAs heterostructures is
formed by a sequence of compressible and incompressible
stripes. Their widths depend on the depletion length, where the
electron density drops to zero near the sample boundary [79].
The latter is set by the gate voltage for gate-de!ned edges and
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is determined by the physics of the localized surface states for
the edges de!ned by chemical etching [123].

Narrow incompressible stripes are !xed-density regions
with the !ling factor between 0 and the bulk !lling
factor. They carry current proportional to the voltage differ-
ence between their edges. Incompressible stripes are sepa-
rated by compressible stripes of !xed electrostatic potential
and coordinate-dependent charge density. Naively, this pic-
ture suggests several co-propagating modes on the edge. Yet,
general arguments based on thermal conductance (section 8)
show that each downstream mode missed by the chiral Lut-
tinger liquid model must be accompanied by an upstream
mode. Inevitable disorder localizes pairs of contra-propagating
modes on large lengths. On the longest length scales, the only
surviving topologically-protected neutral modes are the ones
present even on a sharp edge without reconstruction.

Despite their limitations, chiral Luttinger liquid models
produce deep insights about the FQH effect. One such insight
is bulk-edge correspondence [124]. It turns out that the bulk
wave-function of a Laughlin FQH liquid at ν = 1/(2n + 1)
can be extracted from the correlation function of the electron
operators ψ(x, t) in the chiral CFT (57), where the imaginary
time plays the role of the second spatial coordinate y. Moore
and Read conjectured [124] that this represents a more gen-
eral relation between conformal !eld theories of the edges and
the ground-state wave functions in topological matter. This led
them to a proposal for a non-Abelian state at half-integer !ll-
ing factors dubbed the Pfaf!an state. The Pfaf!an edge theory
contains two modes:

LPf = − 2
4π

∂xφc(∂t + v∂x)φc + iψ(∂t + vn∂x)ψ, (58)

where the Bose-mode φc de!nes the charge density
−e∂xφc/2π, and ψ = ψ† is a neutral Majorana fermion.
The electron operator Ψ = ψ exp(2iφc). Each Bose mode has
the central charge of 1 but the central charge [114] of the
Majorana fermion is 1/2 (roughly speaking, the central charge
counts the degrees of freedom, and a Majorana fermion can
be seen as a half of a complex fermion). This is an example
of a general rule: the chiral central charge of the edge theory
in non-Abelian liquids is usually non-integer. The topological
order in the Pfaf!an state is closely related to the Ising order
from the previous subsection and will be reviewed below.

Exceptions to bulk-edge correspondence are known [125].
Nevertheless, it remains a useful heuristic principle. For
example, consider particle–hole conjugation of topological
orders [126] and its effect on the edge structure. Imagine some
topological order at ν = n + f in a fractionally !lled Lan-
dau level of !lling f on top of n !lled spin-resolved Landau
levels. The same order can be interpreted as a particle–hole
conjugate order of holes at the !lling factor 1 − f on top of
n + 1 !lled Landau levels. One can also de!ne a particle–hole
conjugate order for electrons at the !lling factor n + 1 − f .
The classi!cation of the excitations and the fusion rules are
the same as in the original order. All braiding phases change
their sign. The effect of the particle–hole transformation on the
edge structure is the following. A boundary between ν = n and

ν = n + 1 − f , with f < 1/2, should be understood as a com-
position of an outer boundary between ν = n and ν = n + 1
and an inner boundary between ν = n + 1 and ν = n + 1 − f .
The original state at ν = n + f would have had one or more
edge modes between ν = n and ν = n + f . The particle–hole
conjugate order corresponds to the opposite propagation direc-
tion of each of those modes plus an additional downstream
integer mode describing the boundary of ν = n and ν = n + 1.

Electron tunneling between edge channels can modify the
description of the modes and sometimes reduces their num-
ber. For example, the Laughlin liquid at ν = 1/3 has a single
downstream mode. According to the above prescription, the
2/3 edge contains two charge modes [127]: an integer down-
stream mode and an upstream mode. Electron tunneling due to
inevitable disorder is known to reorganize the edge into a sin-
gle downstream charge mode and an upstream neutral mode
[128].

We !nish the discussion of edge modes by observing that
the central charge in a CFT description is proportional to the
heat conductance of a mode [22, 129, 130]. It was proven that a
chiral mode of the central charge c has the thermal conductance
cκ0T , where κ0T = Tπ2k2

B/3h is known as a thermal conduc-
tance quantum. The central charge is integer for every edge
mode in any Abelian state. Hence, fractional quantization of
the thermal conductance is a sign of non-Abelian statistics.

5.3. Examples of non-Abelian statistics

It was long suspected that the !lling factor [131] 5/2 hosts a
non-Abelian FQH liquid [124]. Experiment has brought strong
evidence in favor of that view [132]. Predictions were made
for non-Abelian orders at other !lling factors [133–143] of
the second Landau level in GaAs. Experiment is consistent
with Abelian orders on the relatively more robust ν = 7/3 and
8/3 plateaus (for a review, see [144]). At the same time, the
analysis of the gap dependence on the !lling factor [145] sup-
ports different nature for FQH states at ν = 7/3, 8/3 on the
one hand and at 7/3 < ν < 8/3 on the other hand. It might be
that all states in the latter interval are non-Abelian. Very little
is known about the plateaus [145–148] that presumably exist
at ν = 19/8, 22/9 and 32/13. We will not address them and
will not dwell on possible non-Abelian states in the !rst Lan-
dau level. Our focus will be on the !lling factors [131, 146]
5/2 and 12/5. A fragile state [149] at ν = 7/2 is expected to
be the same or closely related to the state at ν = 5/2.

The existing theoretical pictures at ν = 5/2 and 12/5 were
in"uenced by CFT ideas [124, 150]. Thus, we start with a brief
summary of the CFT approach to the fractional statistics. A
reader who is not familiar with CFT will be able to follow the
bulk of the discussion in this section. The starting point is an
edge theory, which is a combination of chiral CFTs of per-
haps opposite chiralities (downstream and upstream). Anyons
correspond to the products of primary !elds from each chiral
CFT. One such product is postulated to describe electrons. All
other allowed anyons must have single-valued operator prod-
uct expansions with the electron operator. The rationale for
this requirement comes from two considerations. First, elec-
trons are in the vacuum topological sector and hence braid
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trivially with all excitations. Second, wave functions of sys-
tems of anyons are identi!ed with conformal blocks of the
CFT. Trivial braiding implies single-valued conformal blocks.
The topological spin of each anyon a is determined [108] by
its conformal weights (ha, h̄a) in the CFT:

θa = exp(2πi[ha − h̄a]), (59)

where ha comes from the counterclockwise holomorphic part
of the edge theory, and h̄a from the clockwise antiholomorphic
modes. Below we identify the holomorphic direction with the
downstream direction of the charge mode.

5.3.1. Possible states at ν = 5/2. In our discussion of the
proposed ν = 5/2 and ν = 12/5 orders we will ignore the
two !lled spin-resolved Landau levels. We will think of elec-
trons in the partially-!lled level in terms of composite fermions
that combine an electron and two "ux quanta [151]. Com-
posite fermions move in zero effective magnetic !eld. Thus,
one might expect that they form a gapless Fermi-liquid-like
state. Gapless states are indeed observed [151] at ν = 1/2 and
ν = 3/2 in GaAs. The gap at ν = 5/2 can be explained by
Cooper pairing [22] of composite fermions. However, multiple
ways exist to build a Cooper pair. In an isotropic system, one
can have pairing in various angular momentum channels l. In
an anisotropic system, where l is not a good quantum number,
we can instead talk about the winding number of the phase of
the order parameter as the fermion momentum moves around
the Fermi surface. In general, for a spinless single-component
Fermi surface, only odd values of l are allowed. However, in
the presence of electron–electron interaction it is possible for a
Fermi system to spontaneously divide itself into several com-
ponents with independent Fermi surfaces, and in that case pair-
ing with even values of l is allowed. For example, it has been
proposed that for a wide quantum well at total !lling ν = 1/2,
electrons might organize themselves into two parallel sheets
with 1/4 !lling in each [152]. The bulk-edge correspondence
gives a convenient principle for classifying the various states.

For a half-!lled Landau level, the charge mode is described
by the Lagrangian density (57) with ν = 1/2. Operators that
create and annihilate an electron charge are proportional
to Φ± = exp(±2iφ). One can check that operators Φ± are
bosonic and must be multiplied by a neutral fermion to pro-
duce a legitimate electron operator. This means that the edge
theory should contain one or more gapless Fermi modes. Since
a complex fermion is a combination of two Majorana fermions,
we can assume without loss of generality that all fermion
modes are Majorana. We can also assume that all Majorana
modes are co-propagating since contra-propagating modes can
be gapped out by electron tunneling between edge modes. The
net number C of the Majorana modes is often referred to as
a Chern number, because it has the form of a Chern index in
the analysis presented in [108]. The Chern number is positive
for downstream modes and negative for upstream modes. The
Lagrangian density is

LPf = − 2
4π

∂xφc(∂t + v∂x)φc +

|C|∑

k=1

iψk(∂t + vn sign C∂x)ψk.

(60)

There is no a priori reason for the velocities of the Majorana
fermions to be the same, but edge disorder makes them equal
in the long-scale limit [153–155].

No Majorana modes are present at C = 0. In that special
case [14, 156, 157], known as the K = 8 state, electrons are
gapped on the edge. For subtleties in the 113 state at C = −2,
see [158]. Subtleties that emerge at C = −4 are addressed in
[155].

The states with even Chern numbers are Abelian and the
states with odd Chern numbers are non-Abelian. The topo-
logical order depends only on C mod 16. Thus, there are 8
Abelian and 8 non-Abelian possibilities known together as the
16-fold way [10, 108]. Orders with a large Chern number are
seen as unlikely, and the bulk of research has focused on the
orders listed in table 1. The states with the Chern numbers
C and −(C + 2) are related by the particle–hole conjugation.
The PH-Pfaf!an order at C = −1 is unique in being its own
conjugate [159, 160].

It appears that multiple orders of the 16-fold way are
realized in nature. Numerical work has brought a prepon-
derance of evidence in favor of the non-Abelian Pfaf!an
and anti-Pfaf!an liquids at ν = 5/2 in GaAs without impu-
rities [165–167]; see, e.g., [168–171]. Experiment appears
consistent with a different non-Abelian PH-Pfaf!an liquid
[132, 160]. Some data were interpreted in terms of the Abelian
113 and 331 states [172–174]. Recent theoretical work sug-
gests a complicated phase diagram in realistic disordered sys-
tems in which all topological orders with −3 " C " 1 are
present [175–177] (see also [178–181] for the role of Landau
level mixing). On the other hand, some theoretical proposals
question [182–184] the existence of an energy gap at ν = 5/2.

Half-integer FQH plateaus have also been found in several
systems beyond single-layer GaAs. The SU(2)2 order was pre-
dicted in graphene [185, 186]. The 331 order [14] is believed
[187–189] to be present in GaAs bilayer [152, 190] at the !ll-
ing factor 1/2. Recent experiments on single-layer graphene
have demonstrated the existence of gapped QH states in the
N = 3 Landau level, corresponding to ν = 21/2, 23/2, 25/2
and 27/2, which have been attributed to a state with C = 3 or to
its particle–hole conjugate with C = −5 [186]. Besides GaAs
and graphene [186, 191–195], half-integer plateaus have been
observed [196–198] in ZnO and WSe2.

We !nish the discussion of the 16-fold way by describing
the quasiparticle types, fusion rules, and topological spins for
each order [10]. (See table 1.) All non-Abelian orders possess
excitations with three topological charges: 1, ψ, and σ. 1 and
ψ carry half-integer electrical charges ne/2. σ carriers charge
e/4 + ne/2. The fusion rules for the topological charges are
given by equation (39). Electrical charges of the excitations,
of course, add up in fusion. The topological spins of the exci-
tations are determined by their topological charge t and their
electrical charge ne/4 as

θ(t,n) = θt exp(iπn2/8), (61)

where θ1 = 1, θψ = −1, and θσ = exp(iπC/8).
The K = 8 state is effectively a Laughlin-like liquid of

charge 2e bosons at Landau-level!lling 1/8, which gives rise to
Abelian anyons labeled by their electrical charges ne/4, with
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Table 1. Proposed topological orders at half-integer !lling factors. The Chern number C is the difference between the number of forward-
and backward-propagating Majorana modes on a sample edge.

C −3 −2 −1 0 1 2 3

Name anti-Pfaf!an 113 PH-Pfaf!an K = 8 Pfaf!an 331 SU(2)2

Reference [153, 154] [158] [154, 159, 160] (see [161, 162] [14, 156, 157] [124] [14] [163, 164]
for related surface states)

the topological spins exp(iπn2/8). In the remaining Abelian
states, there are four topological charges 1,ψ, σ and µ. The
electrical charges of 1- andψ-excitations are ne/2, while σ and
µ carry electrical charges e/4 + ne/2. The fusion rules depend
on the parity of C/2. For odd C/2, σ × σ = µ × µ = ψ and
σ × µ = 1. For even C/2, σ × σ = µ × µ = 1 and σ × µ =
ψ. In all cases, ψ × ψ = 1, σ × ψ = µ, and µ × ψ = σ. The
topological spins are given by equation (61) with θ1 = 1, θψ =
−1, θσ = θµ = exp(iπC/8).

A key difference between Abelian and non-Abelian states is
the existence of one charge-e/4 particle σ for the non-Abelian
orders and two charge-e/4 particles σ and µ for the Abelian
orders. This leads to subtleties in the interpretation of experi-
ment since two quasiparticle types in Abelian states may have
the same experimental consequences as two fusion channels
for non-Abelian anyons [199].

Evidence exists for a ν = 1/4 plateau in wide GaAs quan-
tum wells [200–202]. The 16-fold way was extended to that
!lling factor in [203].

5.3.2. Read–Rezayi states. The thermal conductance of a
Majorana mode is determined by its central charge c = 1/2.
A more general class of CFTs is known with c = (2k − 2)/
(k + 2), where k is an arbitrary positive integer. The case
k = 2 reduces to the Ising CFT, while the CFTs with k > 2
are known as parafermion theories [114]. They were used by
Read and Rezayi to generate a family of FQH states [150]
at the !lling factors k/(k + 2). Anyon types [204] are dis-
tinguished by their electrical charge and their topological
charge, which comes from the list of the primary !elds in
the parafermion CFT. There are k(k + 1)/2 primary !elds Φ j

m
with j = 0, 1/2, . . . , k/2, ( j − m) ∈ Z. Two identi!cations are
made: ( j, m) ≡ ( j, m + k) and ( j, m) ≡ ( k

2 − j, m + k
2 ). This

allows choosing j > 0 and − j < m " j. The topological spin
of Φ j

m is

θ j
m = exp

(
2πi

[
j( j + 1)
k + 2

− m2

k

])
. (62)

The fusion channels are given by

Φ j
m × Φ j′

m′ =
min( j+ j′,k− j− j′)∑

j′′=| j− j′|

Φ j′′

m+m′ . (63)

Electrons carry the topological charge Φk/2
1−k/2. The topolog-

ical spin of an anyon of electrical charge se is the product
of the neutral contribution (62) and exp(πi[k + 2]s2/k). The
allowed combinations of the topological and electrical charges
make the braiding phase (54) with an electron φae

a×e trivial. The
lowest quasiparticle charge is e/(k + 2).

The state at k = 4 corresponds to the observed !lling fac-
tor 8/3 = 2 + 2/3. There is some numerical evidence for a
Read–Rezayi state at that !lling factor [133], but experiment
suggests that it hosts a Laughlin-like state (see [144] for a
review). No plateau has been seen [148] at ν = 13/5 = 2 +
3/5, which would correspond to k = 3. A plateau is known
[146] at the particle–hole conjugate !lling factor 12/5. Appar-
ently, Landau level mixing effects [140, 141] are responsible
for the difference between ν = 12/5 and ν = 13/5. Numerics
suggests a non-Abelian state [135–137] at ν = 12/5 that is the
particle–hole conjugate of the k = 3 Read–Rezayi state. Such
state is interesting from the point of view of quantum com-
puting since it allows universal topological computation [24],
impossible with the topological orders of the 16-fold way.

Note that a generalization of the Read–Rezayi states applies
[150] to the !lling factors ν = k/(Mk + 2) with an odd M.
A negative-"ux version [205] of the states was proposed at
ν = k/(3k − 2), k > 2.

Another non-Abelian candidate at ν = 12/5 is a Bonder-
son–Slingerland state [138, 139], whose fractional statistics is
closely related with that in the Ising topological order.

6. Fabry–Perot interferometry with non-Abelian
quasiparticles

6.1. The even–odd effect

The theory of Fabry–Perot interferometry for non-Abelian
anyons has attracted much attention [206–215]. Fabry–Perot
interferometry exhibits particularly interesting behavior for
non-Abelian states, because the interference picture can
depend on the fusion channel of the anyons traveling through
the interferometer and the anyons trapped inside the device.
Let the trapped topological charge be b, the topological charge
of the tunneling anyon be a, and assume that a and b fuse to
c. Then the tunneling current through the interferometer can
be computed from equation (25) with the statistical phase (54)
in the cosine. When multiple fusion channels c exist for given
a and b, the contributions of each fusion channel should be
added with the weight [216]

pc
ab = Nc

ab
dc

dadb
, (64)

where Nc
ab and dx are fusion multiplicities and quantum dimen-

sions. The weights in equation (64) re"ect the fact that there
is no correlation between the incoming quasiparticle and the
particles inside the interferometer, and we may simply add
probabilities, because different fusion outcomes are always
orthogonal. One can check using equation (49) that the weights
add up to one.
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For Ising anyons, multiple fusion channels lead to an
even–odd effect [208, 209]. Suppose that the leading contri-
bution to the current through the interferometer comes from
e/4 quasiparticles with the topological chargeσ (39). Consider
two possibilities for the trapped topological charge t: (i) t = 1
or ψ; or (ii) t = σ. Since the traveling anyon has topological
charge σ, there will be a unique fusion channel for it and the
trapped topological charge in case (i). The theory from section
4 applies with the statistical phase determined by the topolog-
ical and electrical charges inside the interferometer. In case
(ii) two equally likely fusion channels exist according to
equation (39). They correspond to the statistical phases (54)
that differ by π. Hence, the two fusion channels interfere
destructively with each other and no dependence of the cur-
rent through the interferometer on the magnetic !eld can be
seen [208, 209].

After a suf!ciently strong change in the magnetic !eld, a
new anyon of topological charge σ is expected to enter the
bulk of the interferometer. This leads to the switching between
regimes (i) and (ii). The name ‘even–odd effect’ re"ects that
(i) corresponds to an even number of trapped quasiparticles
and (ii) corresponds to an odd number.

The even–odd effect is present in all non-Abelian states
of the 16-fold way [10] and its absence in an experiment
would prove Abelian statistics. The opposite is not necessar-
ily true [199]. Indeed, the existence of two charge-e/4 anyons
in Abelian states of the 16-fold way may mimic the two
fusion channels of the e/4-particles in non-Abelian topolog-
ical orders [199].

The above physical picture assumes that the trapped topo-
logical charge does not "uctuate randomly on the laboratory
time scale. If there are a non-zero even number of e/4 parti-
cles inside the interferometer, one should distinguish between
the cases where they exist in the topological sector 1 or ψ. The
interferometer will exhibit the same !eld periodicity in either
case, but the phase of the signal will differ by π between the
two cases. Over the laboratory time scale necessary to accumu-
late data in an experiment, it is possible that neutral fermions
ψ can tunnel between the edges of the device and one or more
localized states in the bulk, and thereby change the topolog-
ical sector of the interior. In this case, the mean occupations
during the measurement should be a thermal equilibrium dis-
tribution, determined by the energy differences between states
in the different sectors. If one or more of the trapped e/4 parti-
cles is far from the others and far from the boundaries, then the
energy difference between the 1 and ψ sectors will be smaller
than kBT , and the two sectors will have equal probability in
equilibrium. In this case, the e/4 signal would be lost for even
occupation numbers as well as for odd. Effects of frequent
ψ-tunneling were investigated in [217–221].

The discussion above also ignores the tunneling of anyons
of charge e/2 between the edges at the constrictions in the
interferometer. Such anyons carry topological charges 1 and
ψ and do not exhibit an even–odd effect. A contribution to the
tunneling current from e/2 particles should exhibit a periodic-
ity with respect to the magnetic !eld that is two times shorter
than for charges e/4, and it should be present regardless of
the number of enclosed e/4 particles. In addition, if there is

a signi!cant contribution to the signal from e/4 particles that
wind twice around the interferometer, that contribution should
behave similarly to that of e/2 particles.

6.2. Experimental investigations

In a series of papers dating back to 2007, Willett and collab-
orators have reported observations of even–odd alternation in
carefully prepared GaAs samples at !lling factors 5/2 and 7/2,
in a Fabry–Perot geometry. (See [222] and references therein.)
In the most recent of these papers, they reported extensive mea-
surements on 11 different samples, including analyses of the
oscillatory dependences on magnetic !eld and gate voltages.

The interpretation of these experiments assumes that the
interferometer is in a compressible AB regime, where the peri-
ods are strongly affected by underlying !lled Landau levels. It
assumes, further, that when there is an even number of e/4
particles enclosed by the interferometer path, the system is
consistently in one of the two possible topological sectors, 1
or ψ, and that it returns to the same sector when two more
quasiparticles are added. At ν = 5/2, ten e/4 quasiparticles
will leave the interferometer as the "ux Φ = BĀ is increased
by Φ0, so that the parity will switch from even to odd and
back !ve times in this interval. As it turns out, if one takes
into account the Abelian phase acquired when an e/4 particle
encircles an even number of e/4 particles in a !xed topological
sector but ignores the even–odd switching that turns the inter-
ference on and off, one would predict an interference with a
"ux period of Φ0. When this signal is modulated by the rapid
switching with period Φ0/5, the power spectrum is predicted
to have prominent peaks at frequencies 1/Φ0, 4/Φ0 and 6/Φ0.
A similar analysis at ν = 7/2 predicts that interference peaks
due to the circulation of e/4 quasiparticles should occur there
at frequencies 1.5/Φ0, 5.5/Φ0 and 8.5/Φ0.

In addition to the signal from e/4 particles, one should
expect contributions from other processes with different "ux
periods, as well as aperiodic features due to disorder, etc.
These contributions tend to obscure the underlying periodic-
ities in the raw data and lead to complicating features in the
Fourier transform. Nevertheless, it appears that strong peaks
were observed at the predicted positions at ν = 5/2, and to
a lesser extent at ν = 7/2. These results give support for the
occurrence of even–odd alternations, consistent with the exis-
tence of non-Abelian Ising anyons. (The observations do not
distinguish between the Pfaf!an, anti-Pfaf!an, or PH-Pfaf!an
states.)

There are, however, some aspects of the experiments which
are not well understood. The interference areas needed to !t
the data were very small, typically of order 0.25 µm2, while the
lithographic areas were squares ranging from 2.5 to 5.7 µm on
a side. Moreover, since the interference area should presum-
ably connect the openings in the de!ning gates on two ends
of the interferometer, the width in the perpendicular direction
must be less than 0.1 µm. It is not clear what are the physical
mechanisms that give rise to this unusual geometry. There may
also be questions about the extent to which it is appropriate to
talk about the existence of a quantized Hall state in a region of
these dimensions.
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Figure 13. The current from source S splits between two drains D1
and D2. Drain D2 is inside the interference loop. FQH liquid is
shaded.

Nevertheless, the small interferometer area appears to be
reproducible, as it is seen in many samples, and persists at
a variety of !lling factors. The samples used in these exper-
iments include a number of special features, including care-
fully designed screening layers, which may be important for
understanding the resulting geometry. It should also be noted
that in contrast to the procedures most commonly employed in
quantum Hall interference measurements, the samples in these
experiments were illuminated before measurement.

Experiments by An et al [86] have measured phase slips
and telegraph noise at ν = 5/2 analogous to those they found
at ν = 7/3, which were discussed in section 4.1.2, above.
They !nd a distribution of phase-slip sizes with several peaks,
including a prominent broad peak centered at ∆θ ≈ 5π/4,
which they attribute to simultaneous entry of an e/4 quasipar-
ticle into the interferometer region and tunneling of a Majo-
rana fermion (ψ-particle) between the edge of the system
and the location of an e/4 particle in the interior. However,
their data is less extensive than that of Willett et al, and it
seems dif!cult to rule out alternative explanations for their
results.

7. Mach–Zehnder interferometry

A different type of interference geometry, which has also been
realized in quantum Hall states, is Mach–Zehnder geometry
[223, 224], !gure 13. It is natural to ask whether this geom-
etry can lead to a demonstration of fractional statistics. We
shall see that the geometry is also of theoretical interest since it
appears in a general explanation why fractional charge entails
fractional statistics [223].

At !rst sight, nothing changes compared to the Fabry–Perot
case, at least, in the incompressible limit with weak bulk-
edge interactions. The tunneling rate is still given by equation
(24) and the current seems to be the same as above. But, the
magnetic-"ux periodicity eΦ0/qm > Φ0 of the so-computed
current would con"ict with the rigorous Byers–Yang theorem
[225]. Indeed, the Mach–Zehnder interferometer has a hole.
A change of the "ux through the hole by one quantum should
be invisible to the electrons from which the system is made.
Hence, the magnetic "ux period cannot possibly exceed Φ0.

The explanation of the paradox lies in that the drain
inside the interferometer absorbs a quasiparticle after each
tunneling event. The topology of the device implies that the
drain is inside the interference loop. Hence, the statistical

Figure 14. Transitions between the states of a Mach–Zehnder
interferometer in a Laughlin liquid at T = 0.

phase φs contributing to θ = φ1 − φ2 in equation (24) changes
after each tunneling event, and the tunneling rate changes
accordingly. (The contradiction with the Byers–Yang theorem
would be unavoidable if fractional charges could have Bose or
Fermi statistics.)

The precise expression for the current depends on the
details of statistics [10, 160, 203, 223, 224, 226–230] and sim-
pli!es greatly for the Laughlin states at zero temperature [223].
Figure 14 illustrates possible transitions between topological
charges of the drain at the Laughlin !lling factors ν = 1/m. At
zero temperature, charge only goes from the higher chemical
potential to the lower chemical potential and hence all transi-
tions are only possible in the direction of the arrows. The tran-
sition rate pn along the arrow connecting the trapped charges
nνe mod e and (n + 1)νe mod e is given by equation (24) with
the statistical phase that depends on n. The average time a tran-
sition takes is tn = 1/pn. The total time for one full circle in
the diagram !gure 14 is thus t̄ =

∑p−1
k=01/pn. Since a charge

me/m = e is transmitted in that sequence of tunneling events,
the total current I = e/̄t is the harmonic average of the currents
(25) at all possible values of the statistical phase φs. If the "ux
through the hole is increased by Φ0, this only has the effect
of shifting the transition times tn to tn+1, so the net current is
unchanged.

Non-Abelian statistics results in more complicated behav-
ior due to multiple fusion channels for non-Abelian anyons.
Figure 15 illustrates possible transitions among drain states for
a PH-Pfaf!an liquid, in which charge-e/4 quasiparticles tun-
nel at the QPCs. Each vertex is labeled by the trapped electric
charge mod e and the trapped topological charge in the drain.
The transition rates are de!ned in terms of

p(θ) = [Γ2
1 + Γ2

2]r0(V , T) + 2Γ1Γ2 cos(φAB + θ + α)r1(V , T),
(65)

where the statistical phase θ can be 0,π, or ±π/2, Γ1 and Γ2

are the tunneling amplitudes at the two QPCs, φAB is the AB
phase, and r1,2 and α have the same origin as in equation (24).
The transition rates equal p(θ)/2 whenever two fusion chan-
nels are available. It is apparent from the !gure that the system
can return to the initial state in multiple ways. One !nds, as
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Figure 15. Transitions between the states of a Mach–Zehnder
interferometer in a PH-Pfaf!an liquid at T = 0.

in the Abelian case, that the current is unchanged if the "ux
through the hole is increased by Φ0.

Shot noise in the weak tunneling limit yields the most strik-
ing signature of statistics in Mach–Zehnder interferometry
[216]. According to equation (20) one would naively think that
the noise does not contain any new information compared to
the current. This is indeed the case in the Fabry–Perot geome-
try. In Mach–Zehnder interferometry, however, equation (20)
does not hold since tunneling events are not independent, as
their probability is affected by the topological charge, accu-
mulated in the drain. The noise exhibits particularly inter-
esting behavior in non-Abelian states [10]. For example, it
can even diverge at some values of the magnetic "ux [160].
Indeed, consider !gure 15 and suppose that Γ1 ≈ Γ2, r0 ≈ r1

in equation (65). Changing the magnetic !eld allows tuning
φAB so that p(0) ≈ 0. Consider an interferometer in the initial
state (−e/4, σ). The rate p(π)/2 of the process (−e/4, σ) →
(0,ψ) is much faster than the rate p(0)/2 of the process
(−e/4, σ) → (0, 1). Hence, before the interferometer enters the
(0, 1) state, it will evolve through multiple loops (−e/4, σ) →
(0,ψ) → (e/4, σ) → (e/2, t) → (−e/4, σ), where t = 1 or ψ.
The average charge qt, transmitted during those loops, is large:
qt 1 e. Eventually, the drain reaches the (0, 1) state. The tran-
sition rate p(0) out of that state is small, and the interferometer
will be stuck in the (0, 1) state for a long time t ∼ 1/p(0). At
some point, a quasiparticle will tunnel through the device, and
it will rapidly reach the (−e/4, σ) state again. One observes the
alternation of periods of high current and periods of no trans-
port, when the drain is stuck in the (0, 1) state. This implies
high noise.

On the other hand, possible tunneling between interferom-
eter edges and localized states in the bulk does not have much
effect on the current and hence does not lead to telegraph noise
as long as the tunneling events are separated by longer time
intervals than the tunneling events at the QPCs.

Calculations tend to be rather involved in the theory of
Mach–Zehnder interferometers even in the lowest order per-
turbation theory. Yet, curiously, in some cases, the Bethe
ansatz allows an exact solution for the current and noise

in a model of a Mach–Zehnder interferometer [226, 228,
231, 232].

It is instructive to reconsider Fabry–Perot interferometry in
light of the Byers–Yang theorem in a geometry with a hole
in the center of the interferometer [233]. If the "ux through
the hole is increased by Φ0 on a suf!ciently short time scale,
the charge in the hole will increase by νe. For FQH states,
this will alter the statistical phase, which, in addition to possi-
ble effects of the Coulomb interaction, will generally change
the transmission of the interferometer. This does not contra-
dict the Byers–Yang theorem, however, because the theorem
only applies in equilibrium. Equilibrium is established on a
long time scale by relatively rare tunneling events between the
edge of the interferometer and the inner edge around the hole.
Such tunneling also leads to telegraphic noise [234]. A related
phenomenon of switching noise in a Fabry–Perot interferome-
ter with a "uctuating number of trapped anyons was proposed
[235] as a probe of statistics.

Mach–Zehnder interferometry has not yet been imple-
mented for FQH states, despite its success in the integer quan-
tum Hall regime. A recent [236] sheds light on that chal-
lenge by measuring the dependence of the interference vis-
ibility on the !lling factor. The visibility of the interference
in the outer ν = 1 channel diminishes as the bulk !lling fac-
tor decreases toward 1. This is accompanied by signatures
of edge reconstruction, i.e., the emergence of topologically
unprotected pairs of contra-propagating edge modes. It has
long been recognized that quantum Hall edges exhibit compli-
cated spacial structure. Progress in interferometry will likely
depend on a deeper understanding of edge states.

Various other geometries have been considered in the lit-
erature. [237] considers a ‘wormhole’ geometry in which a
tunneling contact creates a shortcut along a chiral FQH edge.
Long tunneling contacts were proposed as probes of neu-
tral modes in [238]. [239] introduces a modi!cation of the
Fabry–Perot setup that reveals an effect of topological vac-
uum bubbles. [240] addresses setups with a large number of
edges. [241] reports an experimental realization of a version
of a Mach–Zehnder interferometer in which a single edge is
split into two conducting channels that provide two interfering
paths.

8. Other techniques

Several other approaches can give information about topo-
logical order. While that evidence may be indirect, it has
importance because of the challenges faced by interferometry.
In this section we focus on four methods: thermal conduc-
tance experiments [132, 242, 243], detecting upstream neutral
modes [244], thermoelectric transport [245, 246], and tunnel-
ing into the edge [118, 247]. Thermal conductance is partic-
ularly useful as a probe of non-Abelian statistics. Tunneling
seems an enticingly straightforward probe of topological order.
The actual information it gives turns out rather limited due to
the complex physics of real edges. The complications, uncov-
ered in tunneling experiments, are likely relevant for other
probes, including interferometry.
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8.1. Thermal transport

The quantization of thermal conductance has long been rec-
ognized in non-interacting 1D systems [248]. Quantum Hall
liquids are unique in that their thermal conductance remains
quantized even for strong interactions [22, 129, 130]. Con-
sider !rst an Abelian FQH system with chiral edges such that
all edge modes propagate in the same downstream direction,
clockwise or counterclockwise, depending on the direction of
the magnetic !eld. Since the bulk is gapped, heat is only car-
ried by the edge at the lowest temperatures. A chiral edge,
emanating from a source at the temperature T , remains in ther-
mal equilibrium at that temperature. The local thermal current
along the edge in any point x depends on the temperature and
the details of the Hamiltonian of a local subsystem around
point x. At the same time, the heat current must be the same
in all points of the edge since energy cannot accumulate on
any portion of the edge in a steady state. This implies that the
heat current Jh(T ) depends only on the temperature and is not
sensitive to microscopic details such as the mode velocities
and intermode interactions. As a consequence, the thermal cur-
rent on an edge with n chiral modes reduces to the sum of n
thermal currents in the simplest chiral systems with harmonic
Lagrangians of the form, equivalent to (56):

L =
!

4π

∫
dx[∂tφ∂xφ− v(∂xφ)2] (66)

with an arbitrary edge velocity v. An easy calculation yields
the quantized thermal conductance for an FQH bar with two
edges emanating from two terminals at the temperatures T and
T + ∆T:

κ = lim
∆T→0

Jh(T + ∆T) − Jh(T)
∆T

= nκ0T, (67)

where κ0 = π2k2
B/3h.

Many quantum Hall states possess topologically protected
upstream neutral modes that travel in the direction, oppo-
site to that of the charge mode. In particular, Jain’s states
at ν = [p + 1]/[2p+ 1] have one downstream mode and p
upstream modes [117]. The effect of the upstream modes on
the thermal conductance depends on the edge length L in com-
parison with the equilibration length ξ on which the energy
exchange between the upstream and downstream modes is
signi!cant [144, 242, 249]. If L , ξ, the thermal conduc-
tances of the nu upstream modes and the nd downstream modes
add up: κ = (nu + nd)κ0T . This can be understood by observ-
ing that (nu + nd) noninteracting modes emanate from each
of the two terminals, maintained at different temperatures
(!gure 16). A long edge reaches thermal equilibrium so that
κ = |nu − nd|κ0T. The absolute value sign arises because heat
can only "ow from the hotter terminal to the colder termi-
nal. For nu %= nd, thermal equilibrium at the temperature of
the majority modes is established on the length scale ∼ ξ.
At nu = nd the approach to the equilibrium is slow [242] and
the thermal conductance κ ∼ ξ/L. At low T, the equilibration
length is predicted to diverge as a power of the temperature
[249].

Figure 16. One downstream and two upstream modes are shown on
each edge. The modes, emanating from the left terminal, have the
temperature T. The modes, emanating from the right terminal, have
the temperature T + ∆T .

Figure 17. The current from source S partitions in the central
"oating contact into N = 4 currents along the N = 4 arms of the
device.

Thermal transport in non-Abelian liquids is qualitatively
similar to the Abelian case. The integer numbers nu and nd

should be substituted with the combined central charges of
the upstream and downstream modes [22, 130]. Those central
charges are not integer in general. In particular, a Majorana
edge mode contributesκ0T/2 to the thermal conductance. This
can be understood by interpreting a real Majorana fermion
mode as half of a complex Dirac fermion mode that can be
present on Abelian edges and carries the central charge cD = 1.
Indeed, a complex fermion ΨD can be represented as the com-
bination ΨD = Ψ1 + iΨ2 of two real fermions with Ψ1 = Ψ†

1

and Ψ2 = Ψ†
2.

Since the FQH effect is observed at low temperatures,
the relevant heat currents are low and challenging to mea-
sure. An ingenious approach was introduced in [250] in an
experiment in the integer quantum Hall effect. The current
I = GV enters the central "oating contact (!gure 17) from a
biased source. The currents I/N leave the contact along N
arms. The dissipated Joule heat Q = [GV2 − NG(V/N)2]/2
raises the temperature Tm of the central "oating contact
and is carried away along the edges of the n arms, so that
Q = N[Tmκ(Tm) − T0κ(T0)]/2, where T0 is the temperature
of the cold contacts. κ can be found after Tm is determined
from the current noise. A possible phonon contribution to the
heat escaping the central "oating terminal can be eliminated
with a subtraction trick [250]. The success of the experiment
depends on how fast charge leaves the central "oating contact.
For a short dwell time, full equilibration cannot be achieved
and the thermal conductance cannot be measured correctly
[144, 251, 252].

Our discussion so far has ignored heat losses from the edge
to the bulk by phonons or other possible processes, which can
contribute at !nite temperatures. Such processes do not appear
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to be a major issue in current experiments. For a theoretical
discussion of bulk losses, see [253].

Using an adaption of the above geometry, Banerjee et
al measured the thermal conductance at several fractionally
quantized states in GaAs, !nding the results [242] κ = κ0T at
ν = 1/3 and 3/5, and κ = 2κ0T at ν = 4/7, consistent with
theory. The thermal conductance at ν = 2/3 remained rela-
tively far from the equilibrated value as expected, since there
is one upstream mode and one downstream mode at that !ll-
ing factor. A recent experiment on graphene [243] measured
κ ≈ 2κ0T at ν = 4/3, in agreement with theory.

The second Landau-level !lling factors 7/3, 5/2, and 8/3
in GaAs were explored in a different sample from the one used
for the states of the !rst Landau level [132]. The observed
κ = 2.96κ0T at ν = 7/3 is consistent with the Laughlin topo-
logical order: two units of thermal conductance come from
two integer edge modes and one more unit comes from one
fractional edge channel. The observed thermal conductance
was 2.19κ0T at ν = 8/3. The topological order at ν = 8/3
is expected to be the same as at the !lling factor 2/3. The
predicted equilibrium thermal conductance is κtheor = 2κ0T
for an in!nite edge. Indeed, the edge contains two down-
stream integer edge channels, and one downstream and one
upstream fractional channels. The difference between the the-
oretical and experimental thermal conductances is similar to
the case of ν = 2/3. This can be understood by observing that
two of the downstream channels interact only weakly with the
remaining downstream and upstream channels [144]. We !rst
observe that the overall charge mode is much faster than the
rest of the modes in the second Landau level [144]. Thus, its
excitations leave the system before they can exchange energy
with the rest of the edge channels on a realistic !nite edge.
Besides, the integer spin mode is only weakly coupled with
the other modes [144]. Thus, the thermal conductance contains
three independent contributions: one quantum from the charge
mode, one quantum from the spin mode, and the contribution
of the remaining downstream and upstream modes. The latter
contribution is subject to strong !nite-size corrections just like
at ν = 2/3.

The observed thermal conductance at ν = 5/2 is (2.53 ±
0.04)κ0T at higher temperatures and grows rapidly at low tem-
peratures. Both properties are consistent with the non-Abelian
PH-Pfaf!an order [144, 249], but the interpretation of the data
is still debated [144, 184, 254–257].

To !nish this section, we note that [258] proposes an exper-
iment with shot noise induced by a temperature gradient in a
quantum point contact.

8.2. Upstream modes

Thermal conductance experiments cannot distinguish a state
with n downstream modes and no upstream modes from a
state with n + m downstream modes and m upstream modes,
under conditions where energy is equilibrated between differ-
ent modes on an edge. Thus, it is helpful to supplement ther-
mal transport experiments with a tool for detecting upstream
modes. Several setups have been used for that purpose. Figure
18 illustrates an early theoretical proposal [259]. Upstream

Figure 18. Charge tunnels into the edge from source S at QPC1.
The upstream neutral mode (dashed line) carriers energy to QPC2.
Non-equilibrium noise is generated in drain D at QPC2.

neutral modes carry no current but they can carry energy.
Charge tunneling from source S at QPC1 induces Joule heat
that is carried upstream to QPC2. A thermoelectric effect gen-
erates excess current noise in drain D and reveals the pres-
ence of upstream neutral modes. The role of QPC1 can also
be played by a hot spot [260] at an ohmic contact. Much of
the early theoretical work [259] was focused on the states of
the 16-fold way at ν = 5/2. See [261] for the application of a
version of the setup [259] to Read–Rezayi states.

Experimental probes of upstream neutral modes are well
established now. Topologically protected upstream modes
were observed at the !lling factors 2/3 and 3/5 in the !rst Lan-
dau level [244, 262] in agreement with theory. No evidence of
an upstream mode was seen [263] at ν = 7/3 in agreement
with a Laughlin order at that !lling factor. An upstream mode
was found at ν = 8/3, as it should be for a particle–hole con-
jugate state of the 7/3 liquid. An upstream mode has also
been detected [244, 263] at ν = 5/2 in agreement with the
anti-Pfaf!an and PH-Pfaf!an models.

The above experiments deal with relatively long edges
of several tens of microns. At the scale of microns, evi-
dence of upstream modes was seen [264, 265] at ν = 1/3
and ν = 4/3 even though no topologically protected upstream
mode is expected at those !lling factors. This can be under-
stood as an example of edge reconstruction [121]. The recon-
structed upstream modes do not survive on longer edges
since inter-channel tunneling localizes them. Topologically
protected modes are always delocalized. The dependence of
the upstream noise on the length of the edge is addressed the-
oretically in [266, 267] and experimentally in [268]. [269]
demonstrates the lack of thermal equilibration between contra-
propagating modes in a small sample.

A very recent experimental development consists in prob-
ing upstream modes on interfaces of different !lling factors
[270]. Several other approaches have been proposed theoret-
ically for the detection of neutral modes. Much attention has
focused on Coulomb blockade physics [271–273], which is
closely related to the interferometry ideas addressed above.
Other proposals include the use of microwave absorption [274]
and a proposed experiment to use a quantum dot transport
to distinguish FQH states from their particle–hole conju-
gates [275]. Neutral modes could be detected with momentum
resolved tunneling into the edges [276–278], but this technique
requires very weak disorder. The same limitation applies to a
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proposal [279] to probe topological order by measuring the
Hall viscosity [280].

8.3. Thermoelectric transport

In the Seebeck effect, a gradient of the electric potential builds
in response to a thermal gradient. The strength of the effect
is measured by the Seebeck coef!cient Q = −∇Q/∇T. In a
uniform FQH system, under conditions where energy is equi-
librated more rapidly than momentum is transferred to impu-
rities, the Seebeck coef!cient should re"ect [245] the entropy
per charge carrier:

Q = −S/(eNe), (68)

where S and Ne are the entropy density and the electron den-
sity. For a non-Abelian FQH state with a small number of well-
separated localized quasiparticles, the entropy at low tem-
peratures should be determined [245] by the number K of
states at the !xed positions of quasiparticles. The latter number
depends on the number of the quasiparticles Nq and their quan-
tum dimension d, K ∼ dNq . The number Nq is controlled by the
magnetic !eld. Thus, a measurement of the Seebeck coef!cient
Q ∼ Nq log d reveals the quantum dimension of non-Abelian
anyons.

The existing experimental data [246, 281] are limited. Qual-
itative agreement with the theory for non-Abelian states of the
16-fold way was reported [246] at ν = 5/2, but more work is
needed before the data are understood.

Related theoretical ideas are explored in the papers
[282–284]. See [285] for a proposal of a thermoelectric probe
of neutral edge modes.

The thermoelectric technique differs profoundly from all
the approaches addressed in the previous sections except
the single-electron-transistor probe of anyon charges (section
3.2). Indeed, all those proposed and implemented probes
of fractional charge and statistics involve edge physics. On
the other hand, thermoelectric transport occurs in the bulk.
Thus, this technique should be insensitive to the complica-
tions of edge physics (see the next subsection). We note that
it has also been suggested to use a scanning tunneling micro-
scope for a bulk probe of anyon statistics [286]. Another pro-
posed bulk probe involves Raman scattering [287, 288]. See
[289, 290] for a discussion of a probe with mobile impurities.

8.4. Tunneling

It was predicted long ago that the tunneling conductance
through a weak link of two FQH liquids follows a universal
power dependence Gt ∼ T2ge−2, where ge depends only on the
topological order [117]. A similar behavior, Gt ∼ T2gq−2 with
a universal qq, was predicted for weak quasiparticle tunneling
between two edges of an FQH system [117]. These predictions
were based on the chiral Luttinger liquid model.

Early results [291] on electron tunneling at ν = 1/3 were
consistent with the theoretical expectations for ge. Yet, at other
!lling factors a puzzling dependence ge ∼ 1/ν was observed
[292]. This does not agree with the theory [293, 294]. Note that
edge reconstruction was predicted to occur in experimental
samples [295, 296]. See [247] for a review.

Later experiments focused on quasiparticle tunneling. The
observed gq is typically greater than the predictions [118].
Three mechanisms beyond the chiral Luttinger liquid model
were introduced to explain the discrepancy: edge reconstruc-
tion [119], long-range Coulomb forces between segments of
the edge [120], and 1/ f noise and dissipation [59]. It is
possible that a combination of mechanisms is at play. Thus,
tunneling experiments only yield an upper bound on gq and
provide limited information about topological order [160].
This probably explains the dif!culties in the interpretation
[172–174, 297] of the quasiparticle tunneling experiments at
ν = 5/2. Different ideal theoretical gq are predicted for differ-
ent states of the 16-fold way. The observed gq has also differed
in different experiments [172–174, 297]. Data from different
samples and even from the same sample at different gate volt-
ages were interpreted in terms of several different states of the
16-fold way. However, the tunneling exponent gq was found
to change continuously with the gate voltage at the gates that
form the tunneling contact. The observed values were consis-
tent with an upper bound on the ideal theoretical value for the
Pfaf!an and PH-Pfaf!an orders [160].

Tunneling data were used to extract both the tunneling
exponent gq and the quasiparticle charge [172–174, 297] at
ν = 5/2 from a !t to a theoretical I–V curve. The con!dence
intervals are elongated ovals in the gq-charge plane and hence
the uncertainty in both quantities is high. At the same time, the
quantized quasiparticle charge is known independently. Fitting
for gq at a !xed charge reduces error bars.

Note, !nally, that tunneling noise was proposed as another
probe of non-Abelian statistics [298].

9. Concluding remarks

Quantum mechanics textbooks usually state that only two
types of quantum statistics are possible: Fermi and Bose. The
argument goes as follows. For two indistinguishable particles,
there is no way to tell the con!guration with particle 1 in point
r1 and particle 2 in point r2 from the con!guration with particle
1 in point r2 and particle 2 in point r1. Thus, the probabilities of
the two con!gurations P(r1, r2) = |ψ(r1, r2)|2 and P(r2, r1) =
|ψ(r2, r1)|2 must equal. Hence, the particle exchange generates
a phase change in the wave-function: ψ(r1, r2) = θψ(r2, r1),
where |θ| = 1. After two particle exchanges, one !nds

ψ(r1, r2) = θ2ψ(r1, r2) (69)

so one must have θ = ±1. The plus sign describes bosons and
the minus sign describes fermions.

The argument might look convincing but it contains mul-
tiple loopholes. First, it may not be necessary for the wave-
function to be single-valued, as is implicitly assumed in
equation (69). Alternatively, the wave function does not have
to depend just on the positions of the particles but may depend
on how the system reached a particular con!guration. In other
words, a single-valued wave function may be de!ned not on
the con!guration space but on the Riemann surface whose
points are equivalency classes of trajectories in the con!gura-
tion space. Besides, θ does not have to be a number but may be

30



Rep. Prog. Phys. 84 (2021) 076501 Review

a unitary operator, if the Hilbert space associated with a !xed
set of particle positions is multidimensional. This last loophole
opens the particularly interesting possibility of non-Abelian
statistics.

The loopholes have some surprising consequences
[299, 300] in 3D, but it is in 2D where things become truly
exciting, as systems with anyons, particles with fractional
statistics or non-Abelian statistics, are mathematically
possible.

But, physics is an experimental science, and the theory
of anyons is only relevant, if anyons exist in nature. Fortu-
nately, observation of the FQH effect makes their existence
an almost mathematical certainty. Indeed, fractional quantiza-
tion of the Hall conductance in appropriate systems is well
established experimentally. As explained in section 2, such
fractional quantization of the Hall conductance in an insula-
tor necessarily entails the existence of fractional charges, and
fractional charges entail fractional statistics.

Yet, general arguments do not tell us everything we might
want to know about the particular anyons that might occur in a
given quantum Hall system. The quantum number ν obtained
from a measurement of the Hall conductance sets constraints
on the possible charges and statistics of the elementary quasi-
particles hosted by the FQH state, but it does not completely
determine them. Moreover, general arguments do not tell us
whether individual anyons, or small collections of them, will
be manifest in any practical experiment.

For a long time, our knowledge about fractional charge and
statistics was derived in a rather unsatisfactory way. First, the-
oretical predictions were made based on assumptions about
the nature of the ground state in an observed FQH state. Sec-
ond, numerics on small idealized systems would verify some
of the theoretical predictions, most importantly, the form of
the ground-state wave function. Third, some experimental data
would show agreement with some aspects of numerics, such
as the spin polarization. This would be interpreted as a proof
of the theoretical picture. Such evidence is inevitably indi-
rect and not always reliable. For example, there remain per-
sistent discrepancies between calculated energy gaps and the
activation gaps measured in experiments. Although these dis-
crepancies have been attributed to effects of disorder, theo-
retical attempts to understand the precise manner in which
impurities affect the measurements have only been partially
successful [301].

The last decade of the twentieth century saw a breakthrough
in the detection of fractional charges. The shot noise technique
proved particularly fruitful (section 3.1). A clear direct evi-
dence of fractional statistics had to wait until very recently.
While promising interferometric results for fractional statis-
tics in FQH states at ν = 1/3 and ν = 2/5 were published
more than a decade ago [90, 91], interpretation of those data
has proved challenging. Similarly, though promising interfer-
ometry results [75] concerning non-Abelian statistics were
published some ten years ago at ν = 5/2, there have been
questions about the interpretation of those data, particularly
because of the very small interferometer area inferred from the
experiments.

In 2020, a clear direct observation of the anyonic statis-
tical phase in interferometry at ν = 1/3 has !nally arrived
[76]. Another achievement of 2020 is the implementation of
an anyon collider [78] at ν = 1/3. Although the relation of
these experiments to fractional statistics may not be direct,
the experiments do probe effects of collisions between pairs
of diluted anyons, where fractional statistics is an essential
ingredient. Results presented in 2019 of improved interferom-
eter experiments at ν = 5/2 and 7/2, using a large number of
samples, have con!rmed the previous measurements on this
system, and give additional support to the existence of parti-
cles with Ising-type non-Abelian statistics in these states. Our
understanding of interferometer experiments has increased as
we have seen that one should distinguish measurements where
the central region is in an incompressible state, with at most
a few localized quasiparticles, and the more usual situation,
where there are many quasiparticles in the system, which can
enter and leave on a laboratory time scale as parameters such
as the magnetic !eld and gate voltages are varied.

Probing potentially non-Abelian states on fragile plateaus
of the second Landau level is certainly challenging. Yet, the
distinction between non-Abelian and Abelian statistics is more
dramatic than the distinction of Abelian fractional statistics
from the Fermi and Bose statistics. This opens a way for probes
that would demonstrate the existence of non-Abelian statis-
tics even though they would not allow distinguishing Abelian
anyons from fermions. One such probe is thermal conductance
(section 8.1). Remarkable evidence of non-Abelian statistics at
ν = 5/2 came from a thermal conductance experiment [132]
in 2018.

The main focus of the experimental work on anyonic statis-
tics has been on the simplest Abelian and non-Abelian !lling
factors 1/3 and 5/2. We eagerly await extension of the recent
experimental breakthroughs to other !lling factors. As this
review shows, there is no lack of theoretical proposals to detect
fractional statistics, and the ball is in the experimentalists’
court. Yet, there is much work for theory too, since the interpre-
tation of the data is often challenging. Major puzzles surround
key probes, such as Fabry–Perot interferometry. For example,
it has been found that Fabry–Perot interferometry exhibits
an enigmatic pairing effect at certain integer !lling factors
[302, 303]. Until that effect is understood, it is hard to be
con!dent in the interpretation of FQH data.

Almost all probes that have been proposed or implemented
are based on edge physics. This is not surprising, since edges
dominate transport and it is easier to access and manipulate
the edges than the bulk. Yet, fractional charge and statistics
are de!ned in the bulk. The success of edge probes hinges on
the bulk-edge correspondencehypothesis (see section 5.2). It is
noteworthy that measurements of fractional charge in puddles
far from the edge of a sample have been successfully carried
out using SETs as charge sensors [44, 45]. It would be highly
desirable to also implement bulk probes of fractional statistics
that would not rely on bulk-edge correspondence. Such probes
must be robust to the existence of compressible islands in the
bulk.

The focus of this review has been on the FQH effect in
solids. At the same time, similar physics involving fractional
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statistics is possible in other settings, including cold atoms
[1, 304].

Recent experiments, particularly at ν = 1/3, produce direct
support for a theoretical picture, developed almost four
decades ago. Yet, other recent experiments on quantum Hall
systems have produced major surprises. Based on the history
of the !eld, we may expect to see many new surprises, whose
in"uence will likely extend well beyond the FQH effect.
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