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Strongly interacting electrons can move in a neatly coordinated
way, reminiscent of the movement of viscous fluids. Here, we
show that in viscous flows, interactions facilitate transport, allow-
ing conductance to exceed the fundamental Landauer’s ballistic
limit Gp,). The effect is particularly striking for the flow through
a viscous point contact, a constriction exhibiting the quantum
mechanical ballistic transport at T =0 but governed by electron
hydrodynamics at elevated temperatures. We develop a theory
of the ballistic-to-viscous crossover using an approach based on
quasi-hydrodynamic variables. Conductance is found to obey an
additive relation G = Gy, + Gyis, where the viscous contribution
G,is dominates over Gy, in the hydrodynamic limit. The super-
ballistic, low-dissipation transport is a generic feature of viscous
electronics.

electron hydrodynamics | graphene | strongly correlated systems

Free electron flow through constrictions in metals is often
regarded as an ultimate high-conduction charge transfer
mechanism (1-5). Can conductance ever exceed the ballistic limit
value? Here we show that superballistic conduction is possi-
ble for strongly interacting systems in which electron movement
resembles that of viscous fluids. Electron fluids are predicted
to occur in quantum-critical systems and in high-mobility con-
ductors, so long as momentum-conserving electron—electron (ee)
scattering dominates over other scattering processes (6-9). Vis-
cous electron flows feature a host of novel transport behaviors
(10-22). Signatures of such flows have been observed in ultra-
clean GaAs, graphene, and ultrapure PdCoO3 (23-26).

We will see that electrons in a viscous flow can achieve
through cooperation what they cannot accomplish individually.
As a result, resistance and dissipation of a viscous flow can be
markedly smaller than that for the free-fermion transport. As
a simplest realization, we discuss viscous point contact (VPC),
where correlations act as a ”lubricant” facilitating the flow.
The reduction in resistance arises due to the streaming effect
illustrated in Fig. 1, wherein electron currents bundle up to
form streams that bypass the boundaries, where momentum loss
occurs. This surprising behavior is in a clear departure from the
common view that regards electron interactions as an impedi-
ment for transport.

A simplest VPC is a 2D constriction pictured in Fig. 14. The
interaction effects dominate in constrictions of width w exceed-
ing the carrier collision mean free path k. (and much greater
than the Fermi wavelength Ar). The VPC conductance, evalu-
ated in the absence of impurity scattering, scales as a square of
the width w and inversely with the electron viscosity 7,

2,2 2
Gus(w) = T2

1
320 W lee, 1]

where n and e are the carrier density and charge. In the opposite
limit, ke > w, the ballistic free-fermion model (1, 5) predicts the
conductance Gyyy = 2¢€2 /h N,where N ~ 2w/Ar is the number
of Landauer’s open transmission channels. The conductance Gujs
grows with width faster than Gy,y. Therefore, for large enough
w, viscous transport yields G values above the ballistic bound.
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Conveniently, both regimes are accessible in a single constric-
tion, because transport is expected to be viscous at elevated tem-
peratures and ballistic at 7"=0. The crossover temperature can
be estimated in terms of the ee scattering mean free path as

le(T)/w = 7°/16 ~ 0.62. [2]

This relation is found by setting Ryis = Rpan and expressing viscos-
ityasn=vnm = iUF leenm, where m is the carrier mass and the
kinetic viscosity v is estimated in Eq. S21. The condition Eq. 2
can be readily met in micron-size graphene junctions.

Several effects of electron interactions on transport in con-
strictions were discussed recently. Refs. 14 and 15 study junc-
tions with spatially varying electron density and, using the
time-dependent current density functional theory, predict a sup-
pression of conductance. A hydrodynamic picture of this effect
was established in ref. 16. In contrast, here we study junctions
in which, in the absence of applied current, the carrier density
is approximately position-independent. This situation was ana-
lyzed in ref. 27 perturbatively in the ee scattering rate, finding a
conductance enhancement that resembles our results.

The relation Eq. 1 points to a simple way to measure viscos-
ity by the conventional transport techniques. Precision measure-
ments of viscosity in fluids date as far back as the 19th century
(28). They relied, in particular, on measuring resistance of a vis-
cous fluid discharged through a narrow channel or an orifice,
a direct analog of our constriction geometry. Further, viscosity-
induced electric conduction has a well-known counterpart in the
kinetics of classical gases, where momentum exchange between
atoms results in a slower momentum loss and a lower resistance
of gas flow. Viscous effects are responsible, in particular, for a
dramatic drop in the hydrodynamic resistance upon a transition
from Knudsen to Poiseuille regime. For a viscous flow through
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Fig. 1. (A) Current streamlines (black) and potential color map for viscous

flow through a constriction. Velocity magnitude is proportional to the den-
sity of streamlines. Current forms a narrow stream, avoiding the bound-
aries where dissipation occurs and allowing the resistance, Eq. 1, to drop
below the ballistic limit value. (B) Current distribution in the constriction
for different carrier collision mean-free-path values. The distribution evolves
from a constant in the ballistic regime to a semicircle in the viscous regime,
Eq. 10, illustrating the interaction-induced streaming effect. Parameters
used are L=3w and b=10%v. The distributions are normalized to unit
total current. A Fourier space filter was used to smooth out the Gibbs phe-
nomenon.

scatterers spaced by a distance L, the typical time of momen-
tum transfer is 7 ~ L? /v ? /vrl, whereas, for an ideal gas, this
time is 7/ = L/v7, where vr is thermal velocity and £ is the mean
free path. For ¢ < L, the viscous time 7 is much longer than the
ballistic time 7'.

The peculiar correlations originating from fast particle colli-
sions in proximity to scatterers can be elucidated by a spatial
argument: Particle collisions near a scatterer reduce the aver-
age velocity component normal to the scatterer surface, v,
which slows down the momentum loss rate per particle, mv v, /L.
Momentum exchange makes particles flow collectively, on aver-
age staying away from scatterers and thus lowering the resistance.

The viscosity-induced drop in resistance can be used as a vehi-
cle to overcome the quantum ballistic limit for electron conduc-
tion. Indeed, we can compare the values Ry, and Ry by putting
them in a Drude-like form R = m/ne®r, with m as the carrier
mass and 7 as a suitable momentum relaxation time. Eq. 1 can
be modeled in this way using the time of momentum diffusion
across the constriction 7 = w? /v, whereas Ry, can be put in a
similar form with 7 = w /vp as the flight time across the constric-
tion. Estimating v = % v ke, we see that Eq. 1 predicts resistance
below the ballistic limit values so long as 7 > 7/, i.e., in the hydro-
dynamic regime w 2 ke.

Guo et al.

Understanding the behavior at the ballistic-to-viscous cross-
over is a nontrivial task. Here, to tackle the crossover, we use a
kinetic equation with a simplified ee collision operator chosen in
such a way that the relaxation rates for all nonconserved harmon-
ics of momentum distribution are the same. This model provides
a closed-form solution for transport through VPC for any ratio of
the length scales w and k., predicting a simple additive relation

Gvrc = Goan + Guis. [3]

This dependence, derived from a microscopic model, interpo-
lates between the ballistic and viscous limits, w < le and w > ke,
in which the terms Gyan and Gy, respectively, dominate.

The Hydrodynamic Regime

We start with a simple derivation of the VPC resistance in Eq. 1
using the model of a low-Reynolds electron flow that obeys the
Stokes equation (29).

(nV? — (ne)*p)v(r) = neV(r). [4]

Here ¢(r) is the electric potential,  is the viscosity, and the sec-
ond term describes ohmic resistivity due to impurity or phonon
scattering. Our analysis relies on a symmetry argument and
invokes an auxiliary electrostatic problem. We model the con-
striction in Fig. 14 as a slit -5 <z < %,y =0. The y — —y sym-
metry ensures that the current component j, is an even function
of y whereas both the component j, and the potential ¢ are odd
in y. As a result, the quantities j, and ¢ vanish within the slit
at y = 0. This observation allows us to write the potential in the
plane as a superposition of contributions due to different current
elements in the slit,

w

o(z, y) = / * 'R — o y)i(e), [5]

w
2

2 2
where the influence function R(z,y):%

potential in a half-plane due to a point-like current source at the
edge, obtained from Eq. 4 with no-slip boundary conditions and
p=0 (30). Here 8= 7{(2672)2, and, without loss of generality, we
focus on the y > 0 half-plane.

Crucially, rather than providing a solution to our problem, the
potential-current relation Eq. 5 merely helps to pose it. Indeed,
a generic current distribution would yield a potential that is not
constant inside the slit. We must therefore determine the func-
tions j(z) and ¢(z, y) self-consistently, in a way that ensures that
the resulting ¢(z, y) vanishes on the line y =0 inside the slit.
Namely, Eq. 5 must be treated as an integral equation for an
unknown function j(z). Denoting potential values at the half-
plane y > 0 edge as ¢1o(z) = (2, y),_ , o, We can write the rela-
tion Eq. 5 as

describes

FIED)

(z — 2’ — i0)?

j(z")
z — o' +i0)>

$+o(z) = BT {( . [6]

2—00

where j(z) is the current y component, which is finite inside and
zero outside the interval [, F].

A solution of this integral equation such that ¢ (z) vanishes
forall —§ <z < § can be obtained from a 3D electrostatic prob-
lem for an ideal-metal strip of width w placed in a uniform exter-
nal electric field Ey = AX. The strip is taken to be infinite, zero

thickness, and positioned in the Y =0 plane such that

w w
—-<X<,

Y=0
2 2 ’

—00 < Z < 00 [7]

(for clarity, we denote 3D coordinates by capital letters). Poten-
tial ®3p (X, Y') is a harmonic function, constant on the strip and
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behaving asymptotically as —Ep X . It is easily checked that the
3D electrostatic problem translates to the 2D viscous problem as

o(X)  Eu(X)

Bi I [8]
—587/81 d+o(z)

3D, Y=0: X

2D, y=40: =z

This mapping transforms Coulomb’s charge—field relation
between the electric field at Y =0 and the surface charge den-
sity, E )=2 f - "()f ))‘?f( , into the 2D viscous relation in

Eq. 6. Potentlal ®3p, obtained through a textbook application
of conformal mapping, then equals

Dsp(X,Y) = —Rer/C2— “’TQ, C=X+iY. [9]

Eq. 9 describes the net contribution of the external field Fy and
the charges o(X) induced on the strip. The field component
E,(X)=—0x®3p vanishes on the strip —% <z < ¥ and equals
A far outside. We can therefore identify A Wlth V/2i 1n the viscous
problem (Fig. 14).

Charge density on the strxp found from 9 with the help of
Gauss’s law, o(X) = Py oryres et under the mapping Eq. 8,

gives a semicircle current distribution,

2
(\$\<2) 7?5\/1”—7—1:2 j(|x|>%)=0. [10]

The potential map in Fig. 14 is then obtained by plugging this
result into Eq. 5. The flow streamlines are obtained from a sim-
ilar relation for the stream function (see ref. 30). Evaluating the

dz = w?/88 and setting A= V /2 yields
g y

R=V/I=168/w?, which is Eq. 1. The inverse-square scaling
R o w™? is distinct from the w ™! scaling found in the ballis-
tic free-fermion regime. The scaling, as well as the lower-than-
ballistic R values, can serve as a hallmark of a viscous flow.
Potential, inferred from the 2D/3D correspondence, is

current [ = f_%ﬂ j(x
2

ﬁsgny |z| > 2
$(2),_yo = 2Vr?—-w/4 2, i

where sgny corresponds to the upper and lower sides,
y ==£0. Potential grows toward the slit, diverging at the end
points z =+ . This interesting behavior, representing an up-
converting DC current transformer, arises due to the electric
field pointing against the current near the viscous fluid edge as
discussed in ref. 29.

Crossover to the Ballistic Regime

Our next goal is to develop a theory of the ballistic-to-viscous
crossover for a constriction. Because we are interested in the lin-
ear response, we use the kinetic equation linearized in deviations
of particle distribution from the equilibrium Fermi step (assum-
ing ks T <K E F),

(0r +VVx) f(0,%, 1) = Lee(f) + Loa(f), [12]

where 6 is the angle parameterizing particle momentum at
the 2D Fermi surface. Here, I and L,y describe momentum-
conserving carrier collisions and momentum-nonconserving scat-
tering at the boundary, respectively.

In the presence of momentum-conserving collisions, trans-
port is succinctly described by “quasi-hydrodynamic variables”
defined as deviations in the average particle density and momen-
tum from local equilibrium (31). These quantities can be
expressed as angular harmonics of the distribution f(6,x, t),

3070 | www.pnas.org/cgi/doi/10.1073/pnas.1612181114

fo={f(0))g, fr1= <ewf(0)>9, [13]

where we introduced notation (...), = § ...22. The quantities fo
and f41, conserved in the ee collisions, represent the zero modes
of I.. For suitably chosen L., the task of solving the kinetic equa-
tion in a relatively complicated constriction geometry is reduced
to analyzing a self-consistency equation for the variables f, and
f+1. We will derive a linear integral equation for these quan-
tities and solve it to obtain the current density, potential, and
conductance.

To facilitate the analysis, we model L. by choosing a single
relaxation rate for all nonconserved harmonics,

Le(f)==2(f=Pf), P= Y |m)(m|, [14]

m=0,+1

where v represents the ee collision rate, with k.=wv/v, and
P is a projector in the space of angular harmonics of f(0)
that selects the harmonics conserved in ee collisions. Here
we introduced Dirac notation for f(#) with the inner product

(filf2) = § 2££(0)£2(0). Namely,

dgl im(0—6’
Z ge (6 H)f(a/).

m=0,%1

<9‘m> _ eim@7

Pf(0) =

As in quantum theory, the Dirac notation proves to be a useful
bookkeeping tool to account, on equal footing, for the distribu-
tion function position and wavenumber dependence, as well as
the angle dependence.

To simplify our analysis, we replace the constriction geometry
by that of a full plane, with a part of the line y = 0 made impene-
trable through a suitable choice of Lq(f). Scattering by disorder
at the actual boundary conserves f; but not f1.,. We can therefore
model momentum loss due to collisions at the boundary using

w
O7 |l‘| < 5
a(x) = w [15]

s boCy), lal > &

Ia(f) =

where P’ is a projector defined in a manner similar to P, pro-
jecting f on the harmonics m ==+1. The term a(z) describes
momentum relaxation on the line y = 0, equal to zero within the
slit and to b outside. The parameter b > 0 with the dimension of
velocity, introduced for mathematical convenience, describes a
partially transparent boundary. An impenetrable no-slip bound-
ary, which corresponds to the situation of interest, can be mod-
eled by taking the limit b — oco.

We will analyze the flow induced by a current applied along
the y direction, described by a distribution,

7(0,x) = £O0) + 6£(6,x), fP0)=2jsin6. [16]

Here, /(% and &f, which we will also write as ‘ f<0>> and |6f),
represent a uniform current-carrying state and its distortion due
to scattering at the y = 0 boundary. The quantity j is the current
density. Once found, the spatial distribution f (6, x) will allow us
to determine the resulting potential and resistance.

The kinetic equation, Eq. 12, reads

[0: + K +a(x)P'|f)=0, K=vV+~1l—~P [17]

(from now on, we suppress the coordinate and angle dependence
of f and switch to the Dirac notation). Plugging f = f(*) 4 6/, we

Guo et al.
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rewrite Eq. 17 as (K + &) [0f) = —a& ’f(0)>, where, for concise-

ness, we absorbed the projector P’ into & and set 9;f =0 for a
steady state. We write a formal operator solution as

16f) = —(1+ G&)~' Ga

7, [18]

where G = K ! is the Green’s function. Performing analysis in
momentum representation, we treat the scattering term in Eq. 15
as an operator,
A/ / . kw

(kla|K') = P'ay, —pry, o = 2wbd(k) — bw sinc - 09
where sincz = %22, The two terms in oy describe scattering at
the y = 0 line minus the slit contribution.

Next, we derive a closed-form integral equation for quasi-

hydrodynamic variables by projecting the quantities in Eq. 18
on the m=0,+1 harmonics, Eq. 13. Acting on Eq. 18 with

P gives |Pof) =—(1+ Ga) ' Ga ‘f<0)>, where G = PGP is a
3 X 3 matrix in the m =0, %1 space (here we used the iden-
tity & = P&.P, which follows from PP’ = P’ P = P'). The integral
equation is obtained by acting on both sides with the operator
1+ Ga, giving

1+ Ga) ‘f> - ‘f(°>>. [20]

Here, we defined f = f(*) + P4y, the full distribution function
projected on the m =0, £1 harmonics.

The quantity f represents an unknown function that can be
found, in principle, by inverting the integral operator 1 + Ga in
Eq. 20. However, rather than attempting to invert 1+ G directly
in 2D, it is more convenient to proceed in two steps: First, ana-
lyze Eq. 20 in 1D, on the line y =0, and then extend the solution
into 2D. ~

We start with finding G. As a first step, we evaluate the 3 x 3
matrix S =vPGoyP, where Go=1/(ikv + 7). The quantity Go
is an auxiliary Green’s function describing transport in which all
harmonics, including m =0, £1, relax at a rate ~y. Direct calcula-
tion gives matrix elements (here m, m’ =0, £1, Am =m’ — m),

i(m’—m)6 0 Am
S = ( L) =tanhf———  [21]
v + ikv . (Zeﬁ)\AmI

where we denote sinh = - and 0y, = arg(ki + ikz).

The matrix G can now be expressed through the matrix S
by expanding the actual Green’s function as G=1/(G; "' —
vP)= Go + GoyPGp + ..., which gives

P

G:G0+GOTG07 T:m.

[22]

Here, we resummed the series, expressing the result in terms of
a 3 x 3 matrix 7' in a manner analogous to the derivation of the
Lippmann-Schwinger 7 matrix for quantum scattering with a
finite number of “active” channels. We note that v PGy P is noth-
ing but the matrix S in Eq. 21. Plugging Eq. 22 into G = PGP
and performing a tedious but straightforward matrix inversion,
we obtain

B > B2
_1 . e —12z,  —e"z;
~ S sinh
G = z = smhB (e e im | 123
v —eﬁzk2 — 12 e?

where z; = ', and the basis vectors are ordered as |+1), |0),
and |—1).

Guo et al.

In what follows, it will be convenient to transform |+1) to
tfle even/odd basis | ¢) = |+1>\j§|_1>, |s) = le/_i'i_l).ln this basis,
G reads

@00 @Oc GOS
ch GCC Gcs
G50 Gsc Gss
& 71;\/51431 7i\/§l‘&2
K2 K2 K2
_ | —iv2m 2k3R —2k1Kko Ry [24]
VK2 st vkt
7i\/§f$2 *2/{1/{2R+ 2/{%R+
K2 Kt yr!

where the basis vectors are ordered as |0), |c), and |s) and we
defined Rs (k) =vkK? + 1+ 1and k12= "2k 2, K= /K7 + K3.
The quantities G and @ represent, through their dependence on
k, translationally invariant integral operators in position repre-
sentation and diagonal operators in momentum representation.

Next, we evaluate the matrix that represents the operator @
restricted to the line y =0,

D(kl):/ %é(/ﬁ,/@). [25]

The matrix elements Go. and Gos are odd in k, and therefore

give zero upon integration in Eq. 25; as a result we obtain a block
diagonal matrix,

Doo (k1) Doc(kr) 0
D(k) = Deo(k1)  Dee(kr) 0 . [26]
0 0 Dss(kl)

The quantity D, (k1) will play a central role in our analysis.
Indeed, because the flow of interest is symmetric under y — —y
and z — —z, the fy and J, components vanish on the y =0 line.
As aresult, the distribution function at y = 0 is of a pure |s) form,
thatis, f(6, ) = g(z)+/2sinf.

Evaluating the integral over & in Eq. 25, we obtain

” -1
Du(h) = Zsgnk + K+ (k> + 1) cot a 271

TRV

where = kv/~. This expression defines an even function of &
with the asymptotics

Dys(lklv < 7)== 1

2
= D =2 12
|k‘1}27 (|k|v>>'7) - [ 8]

Because the matrix element D, is an eigenvalue of D for the
eigenvector |s), the # dependence can be factored out of Eq.

20, giving (1 + Da) | g) :’g(o) > Finally, multiplying by D", we
obtain the “central equation,”

_ dk’
DL g+ [ Gran i =2mus(k), 129

where p is an unspecified number, akin to a Lagrange multiplier,
which fixes the total current value. Here, we wrote the relation
(D™' + a)|g) = |k=0) as an integral equation, replacing &
with & for clarity.

The origin of the p-term in Eq. 29, and its relation with the
properties of the operator D, is simplest to understand using
a discretized momentum representation. Letting k1 = 2T n and
replacing

/dkl... - 2% oy 2m8(k) — Lio, [30]
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tion (A) at the crossover, lee ~
The spikes at the constriction edges in B are a signature of a hydrodynamic
behavior (Eq. 11 and accompanying text). Plotted is particle density devia-
tion from equilibrium, fy(x), which is proportional to potential (see discus-
sion preceding Eq. 33). Parameters used are (i) v =v/w and (ii) v = 15v/w;
other parameter values are the same as in Fig. 1B.

Potential distribution induced by a unit current through a constric-
w, and (B) in the viscous regime, lee > w.

that is, putting the problem on a cylinder of circumference L,

we see that the values G, (k1, k2) vanish for k& =0 and any k.
This observation implies that the quantity D (k1) also vanishes
for k1 =0, and thus the operator D does not have an inverse. In
this case, caution must be exercised when multiplying by D~".
Namely, the quantities D' |f) are defined modulo a null vec-
tor of D, which is the k1 =0 mode with an unspecified coeffi-
cient, represented by the p-term. We note, parenthetically, that
discretization has no impact on the values Dss(k1 # 0) given in
Egs. 27 and 28.

We obtain current distribution by solving, numerically, Eq. 29,
discretized as in Eq. 30, and subsequently Fourier-transforming
gk to g)osition space (Supporting Information). A large value
b=10"v was used to ensure that current vanishes outside the
interval [—5, %]. The resulting distribution, shown in Fig. 1B,
features interesting evolution under varying ~: Flat at small
v, the distribution gradually bulges out as « increases, peak-
ing at 2 =0 and dropping to zero near x ==+7. In the limit
~v>> v/w, it evolves into a semicircle coinciding with the hydro-
dynamic result, Eq. 10. Current suppression near the constriction
edges is in agreement with the streaming picture discussed in the
Introduction.

The solution on the line y =0 can now be used to deter-
mine the solution in the bulk. For example, to obtain the den-
sity fo(x), we project the relation Eq. 20 on m = 0 harmonic, tak-
ing into account that both f(*) and of are of an |s) form. This
procedure yields an expression for the 2D density of the form
fo(x)=— [ dz’ GOS ;2" )a(z")g(x"), with x being a 2D coordi-
nate and —oo < 2’ < co. To avoid handling the b — oo limit in «,
we write this relation, using Eq. 29, as

3072 | www.pnas.org/cgi/doi/10.1073/pnas.1612181114

hx) = — / dr' Gos(x, ') [ — (DZ'9) (). 1311

Plugging in Gos (k) = vz,gzifk’“g), Fourier-transforming, and carry-
ing out the k; integral by the residue method, | dkze™2Y k;_’sz =
1 2

—me~¥k2lsgn 4, we obtain

folx) = 22 / s =0 (D22 (k) gy, — 2mpub(ky). [32]

V20

The resulting distributions, shown in Fig. 2, are step-like. At
large y, the u-term dominates, giving fo(|x| > w) = — \;v sgny.

Y2, regardless of the parame-

Therefore, the step height equals
ter values used.

This relation provides a route to evaluate resistance. Namely,
because of charge neutrality, the density f, obtained from a
noninteracting model translates directly into potential distribu-
tion ¢(x) = .- fo(x), where vo is the density of states. Divid-
V2p

evgu

ing the potential difference V = by the total current
I= [ dzg(z) (evsinf|s) =

for resistance,

= ﬁgklzo yields a simple expression
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Fig. 3. (A) The resistance R, Eq. 33, plotted vs. . Upon rescaling R — Rw,
v —~w, all of the curves collapse on one curve, confirming that the
only relevant parameter is the ratio w/lee = wy/v. (B) Scaled conductance
G =1/(Rw) vs. yw. All curves collapse onto a single straight line, which can
be fitted with (0.694 + 0.378yw)p '. This dependence matches Eq. 3 which
corresponds to (2/7 + 7 /8yw)p . Parameters used are b = 10°v, the num-
ber of sampling points within the constriction ~160, and the length unit
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M7 = QL’ [33]
VGk=0 e“ V1o

where gi—o= [ g(z)dz, and p, is a quantity of dimension
Ohm - cm. Because g o pu, the resulting R values are u-
independent. Fig. 34 shows R plotted vs. v. As expected, R
decreases as + increases, i.e., carrier collisions enhance conduc-
tion.

As a quick sanity check on Eq. 33, we consider the near-
collisionless limit v < v/w. In this case, Dss(k) =~ 2/7v, and the
integral Eq. 29 turns into an algebraic equation, which is solved
by a step-like distribution,

21 2
2) = ——— 2)==. [34
gllzl > w/2) = =7, g(lzl <w/2)= """ 134]
In the limit b — oo, the total current is / = £ %% Taking the

2D density of states vp = % (here N is spin-valley degeneracy,
e.g., N =4 for graphene), we find
V. 1 hAr 2

R=— = -
I Ne22w ' i

[35]

This result coincides with the collisionless Landauer conductance
value. Spatial dependence can be obtained by plugging ¢(z) into
Eq. 32. Integrating and taking the limit b — oo gives

sgny
X)) = ——= 1—
o) = =5 |
1% is the angle at which the interval
[—%, %] is seen from the point x=(z, y). This result confirms
the value ﬁ for the step height.

The dependence R vs. v shows several interesting features,
some expected and some unexpected. First, on general grounds,
we expect that the dependence on + is controlled solely by the
ratio w/lk.. Indeed, plotting the rescaled quantity Rw vs. yw,
we find a family of curves that all collapse on one curve (this uni-

= [36]

where 0(x) =tan™
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versality only holds at large b, cf. Fig. S1). Second, quite remark-
ably, inverting this quantity and plotting 1/(Rw) vs. yw, we find
a nearly perfect straight line with a positive offset at v=0; see
Fig. 3B. The straight line, which is identical for all w values, is
described by p./(Rw) = a1 + azyw. This dependence translates
into a simple addition rule for conductance, G = Ghay + Gyis. The
term Gpan describes a y-independent ballistic contribution that
scales linearly with w, whereas Gi;s describes a viscous contribu-
tion proportional to y that scales as w?; the two terms yield val-
ues a1 =2/m and ap = 7/8, respectively. This finding is in good
agreement with the values a1 =0.694 and a; =0.378 obtained
from a best fit to the data in Fig. 3B.

The additive behavior of conductance at the ballistic-to-
viscous crossover comes as a surprise and, to the best of our
knowledge, is not anticipated on simple grounds. It is also a
stark departure from the Matthiessen’s rule that mandates an
additive behavior for resistivity in the presence of different scat-
tering mechanisms, as observed in many solids (32). This rule
is, of course, not valid if the factors affecting transport depend
on each other, because individual scattering probabilities cannot
be summed unless they are mutually independent. The indepen-
dence is certainly out of question for momentum-conserving ee
collisions that do not, by themselves, result in momentum loss
but can only impact momentum relaxation due to other scat-
tering mechanisms. Furthermore, the addition rule for conduc-
tance, Eq. 3, describes a striking “anti-Matthiessen” behavior:
Rather than being suppressed by collisions, conductance exceeds
the collisionless value.
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