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Collective modes in two-dimensional electron fluids show an interesting response to a background
carrier flow. Surface plasmons propagating on top of a flowing Fermi liquid acquire a non-reciprocal
character manifest in a ±k asymmetry of mode dispersion. The nonreciprocity arises due to Fermi
surface polarization by the flow. The flow-induced interactions between quasiparticles make col-
lective modes of the system uniquely sensitive to subtle “motional” Fermi-liquid effects. The flow-
induced Doppler-type frequency shift of plasmon resonances, arising due to electron interactions,
can strongly deviate from the classical value. This opens a possibility to directly probe motional
Fermi-liquid effects in plasmonic near-field imaging experiments.

Plasmonic drag, also known as the plasmonic
Doppler effect, is a motional effect that describes
a change in the dispersion of collective charge os-
cillations induced by an electric current driven
through the system. As a simplest case of mo-
tional coupling between two different collective
flows, the collective oscillations and the DC cur-
rent, plasmonic drag is of interest for the quest
for new effects due to the electron-electron inter-
actions, and new transport phenomena due to
such effects. Graphene plasmonics1–4, in partic-
ular the near-field imaging techniques developed
recently5,6, provide a platform in which the plas-
monic drag effects can be realized and explored.

Here we investigate plasmonic drag in a flow-
ing Fermi liquid. The Fermi-liquid interactions
are known to be unimportant for plasmons in
systems with parabolic electron band dispersion,
where the collective center-of-mass motion of
charges can be separated from their relative mo-
tion due to the Galilean symmetry7,8. However,
as we will see, a very different situation occurs
for electron systems with a nonparabolic band
dispersion such as that of graphene.

In this case, as we will see, the Fermi-liquid in-
teractions do renormalize the Doppler shift. Our
analysis, which fully accounts for the interaction
effects, predicts the change in the plasmonic fre-
quency in the presence of the flow:

δω = ku

(
1

4
+

3

4

G1 + α

1 + F1

)
+O(u2). (1)

Here u is the drift velocity, F1 is the m = 1
harmonic of the Landau interaction and G1 is
its radial derivative defined below. The quantity
G1, as we will see, is uniquely sensitive to the

motional effects. The quantity α describes the
curvature of the band dispersion, such that α =
0 for the linearly-dispersing carriers and α = 1
for parabolic dispersion. This result is valid at
relatively weak interactions; a more complicated
behavior is found for stronger interactions using
a relativistic Landau Fermi-liquid framework9

As a quick sanity check, taking F1 = G1 = 0
yields the classical Doppler shift δω = ku when
band dispersion is parabolic [α = 1]. In con-
trast, for linear dispersion [α = 0] Eq.(1) pre-
dicts a nonclassical Doppler shift10 δω = 1

4ku.
This behavior of plasmonic drag displays an

interesting analogy with the seminal results
on motional effects in superconducting Fermi
liquids11,12. The current-current correlation
function, which determines the response of su-
percurrent to vector potential, was found to be
strongly renormalized by the Fermi-liquid inter-
actions. However, these renormalization effects,
while nominally big, feature a cancellation for
systems with parabolic bands.

To emphasize the sensitivity of the Doppler
shift to fundamental symmetries of Bloch elec-
trons, such as Galilean symmetry for parabolic
bands and Lorentz symmetry for Dirac bands,
it is instructive to make comparison with light
drag in optics. Known as Fizeau drag13, it arises
due to the speed of light dependence on the ve-
locity of a transparent, moving medium. For a
slowly moving medium, Fizeau drag is a ±k-odd
effect first-order in the medium velocity u,

δω = uk

(
1− 1√

n

)
, (2)

where n is the medium refraction index. The re-
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duction of the frequency shift compared to the
classical Doppler shift δω = uk is a distinct sig-
nature originating from the symmetry of space-
time and special relativity.

For the plasmonic Doppler effect in graphene,
our analysis predicts a similar suppression as
compared to the classical Doppler effect, a dis-
tinct behavior arising due to relativistic carrier
dispersion in graphene. At the same time, the
effect is considerably stronger than the light
drag, on the order δω/ω ∼ u/vp, where vp
is plasmon velocity. Our analysis also demon-
strates that the Doppler shift is further renor-
malized, and enhanced, by interactions in the
flowing Fermi liquid.

The dependence of the Doppler shift on the
band curvature α and the electron interac-
tions (F1 and G1) can provide a way to tune
the Doppler shift. If band curvature is large
and positive, the Doppler shift is enhanced,
whereas when curvature is large and negative,
the Doppler shift sign is reversed. The interac-
tions F1 and G1 renormalize the Doppler shift
and push it away from the free-particle value.
Measuring plasmonic Doppler effect can there-
fore be used to directly probe motional Fermi-
liquid effects. Comparison of the effects for dif-
ferent electron band dispersion can shed light on
subtle aspects of Bloch electron dynamics

In our analysis, we will focus on a two-
dimensional Fermi liquid in the collisionless
regime ω � γee, where γee is the carrier colli-
sion rate. In this case, while the effects of colli-
sions are negligible, the effects of ee interactions
are not negligible because carriers are subject
to the short-range Landau interactions in com-
bination with long-range Coulomb interactions.
This system is described by the single-particle
Hamiltonian

H = ε0(p) + eφ(x) +
∑
p′

f(p,p′)n(p′,x), (3)

where ε0(p) is particle dispersion and φ(x) is the
electrostatic potential

φ(x) =

∫
d2x′e

n(x′)− n̄
|x− x′|

, (4)

Here n(x) =
∫

d2p
(2π)2n(p,x)

∑
p′ ... is the den-

sity of distant charges; the quantity −n̄ de-
notes compensating background charge due to

ions or charge on the gates. The last two
terms in Eq.(3) represent the potential energy
of a particle due to a change in the distribu-
tion of other particles, those far away and those
nearby. Distant particles contribute the long-
range Coulomb potential which arises due to a
change in the net density of charge at a remote
point. The term

∑
p′ f(p,p′)n(p′) is the angle-

dependent spatially-local interaction of the Lan-
dau Fermi-liquid theory.

We note parenthetically that the apparent sin-
gularity at x′ = x is an artifact of our decompo-
sition of the potential into a sum of the remote
Coulomb part and the local Fermi-liquid part,
where ‘local’ and ‘remote’ is defined relative to
the Fermi wavelength. While this decomposition
is somewhat ambiguous, it will be seen that the
expression above is mathematically sound and
well behaved: It is free from divergences arising
at x′ ≈ x and provides a correct description in
the long-wavelength limit of interest.

We will write the particle distribution as a
sum of the parts describing a steady-state equi-
librium in the presence of a flow and a pertur-
bation describing collective charge oscillations:

n(p,x, t) = nu(p) + δn(p,x, t), (5)

nu(p) =
1

eβ(ε0(p)+
∑

p′ f(p,p′)nu(p′)−up−µ) + 1
.

Here the subscript u indicates that the momen-
tum distribution is altered by the flow.

Since nu(p) appears under the Fermi function
that defines nu(p), it may seem that the de-
pendence of current on the flow velocity u must
take a nonclassical form. Yet, this dependence
takes a completely conventional form. This can
be seen by starting with the expression for cur-
rent that accounts for a change in velocity due
to Fermi-liquid interactions with a u-dependent
particle distribution:

j =
∑
p

e∇p

ε0(p) +
∑
p′

f(p,p′)nu(p′,x)

nu(p)

=
∑
p

eunu(p) = en̄u. (6)
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Here we integrated by parts using the identity

∇p ln(1− nu(p)) (7)

= β

v0(p)− u +∇p

∑
p′

f(p,p′)nu(p′)

nu(p),

where v0(p) = ∇pε0(p).
The result in Eq.(6) identifies the quantity u,

introduced above as a convenient parameteriza-
tion of the flowing carrier distribution, with the
drift velocity defined in a conventional way as
j = envd. Below we study collective charge os-
cillations in the presence of the flow and deter-
mine the plasmonic Doppler shift by carrying
out perturbation theory in u. The relation in
Eq.(6) can then be used to express the Doppler
shift through the actual electric current.

A nonclassical relation that does arise is the
one for the Fermi surface displacement induced
by the flow. Working at small u and assuming
a change in particle distribution due to current
that happens only near the Fermi level, we can
represent the distribution as a displaced Fermi
surface

p(θ) = pF + ∆p cos(θ). (8)

The amplitude of the displacement ∆p can be
found from the relation defining the Fermi sur-
face,

ε0(p) +
∑
p′

f(p,p′)nu(p′)− up = µ, (9)

through rewriting it in terms of the change of
the distribution due to the flow

∆n(p) = nu(p)− n0(p). (10)

As always in the Fermi-liquid theory, it will be
convenient to absorb the contribution of a non-
moving Fermi sea in the quasiparticle energy,
ε(p) = ε0(p) +

∑
p′ f(p,p′)n0(p′). Combining

with Eq.(8), we can describe the displaced Fermi
surface as

0 = vF∆p cos θ +
∑
p′

f(p,p′)∆n(p′)− upF cos θ

= vF∆p(1 + F1)− upF cos θ, (11)

where vF = dε(p)/dp at p = pF , and we intro-
duced angular harmonics of the Landau interac-
tion defined in the standard way:

Fm =
∑
p′

e−im(θp′−θp)f(p,p′)δ(ε(p)− µ). (12)

From Eq.(11) we find the relation

∆p =
m∗u

1 + F1
(13)

where we defined m∗ = pF /vF the quasiparticle
effective mass.

The dynamics of our system is described by
classical equations of motion

∂tn+ {H,n} = 0 (14)

where {A,B} = ∇pA∇xB−∇xA∇pB are clas-
sical Poisson brackets. We linearize the Hamil-
tonian in the carrier distribution perturbed
away from equilibrium as given in Eq.(5), ar-
riving at

H = ε(p) + eδφ(x) +
∑
p′

f̃(p,p′)δn(p′,x, t)

(15)

ε(p) ≡ ε(p) +
∑
p′

f(p,p′)∆n(p′), (16)

where δφ is the potential of a distant charge
perturbation, δφ(x) =

∫
d2x′ e

|x−x′|δn(x′). The

quantities ε(p) and ε(p) are the quasiparticle
energy in the presence and absence of u, re-
spectively; f̃(p,p′) is the Landau function for

a shifted Fermi surface. The relation between f̃
and f will be discussed below.

To proceed with the analysis, we define ε̃(p) =
ε(p)−p ·u the quasiparticle energy in the pres-
ence of flow viewed in the comoving frame, then
the steady-state distribution describing current
flow can be written as

nu(p) = θ(µ− ε̃(p)) (17)

Using this notation and the Hamiltonian in
Eq.(15), we linearize equations of motion,
Eq.(14), to obtain

∂tδn =

−eE +
∑
p′

f̃(p,p′)∇xδn
′

∇pnu(p)

− vp∇xδn (18)
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FIG. 1. The dashed red and the black dotted lines
mark the Fermi surface in the presence and absence
of the flow, respectively. Shown are the coordi-
nates (p, θ) for the Fermi surface at rest, and the
coordinates (q, ϕ) for the Fermi surface describing a
flowing Fermi liquid. Also shown is the vector ṽ =
∇pε̃(p) normal to the shifted Fermi surface (dashed
red line), which is the contour of ε̃(p) = ε(p)−p ·u
(see text).

where δn and δn′ is a shorthand for δn(p,x, t)
and δn(p′,x, t), respectively; E = −∇xδφ and
we defined the velocity in the lab frame vp ≡
∇pε(p).

To describe collective modes, we consider per-
turbations of a plane-wave form, δn(p)eikx−iωt.
Writing the field of distant charges as eE =

−ikV (k)
∑

p′ δn(p′), V (k) = 2πe2

k , and substi-

tuting in Eq.(18), gives an integral equation for
the collective mode:

(k · vp − ω) δn(p) + k · ∇pnu(p)
∑
p′

f̃(p,p′)δn(p′)

= −k · ∇pnu(p)V (k)
∑
p′

δn(p′). (19)

Since the Fermi surface, after being shifted, is
still approximately circular (at lowest order in
u/vF ), we find it convenient to reparameterize
all quantities with q ≡ (q, ϕ), denoting the mo-
mentum and angle measured from center of the
shifted Fermi sea (See Fig.1).

Using the new coordinate system, all the
quantities can be written explicitly. The shifted
Fermi sea at zero temperature is simply

nu(p) = θ (q(p)− pF ) . (20)

The perturbed distribution δn(p) can be ex-
pressed through Fermi surface normal displace-
ment vs. polar angle ϕ on the shifted Fermi
surface:

δn(p) =
h2

pF
δ(q − pF )δn(ϕ) (21)

This relation allows us to convert any integral
over p involving δn(p) into an integral over ϕ:

∫
dp2

h2
δn(p)U(p) =

∫
pF dq

h2
δn(p)U(p)

=

∫
dϕδn(ϕ)U(ϕ, q = pF ) (22)

where U(p) can be an arbitrary function.

Another useful property of the coordinates
(q, ϕ) is that the ϕ directly labels the direction of
ṽ, because being the gradient of ε̃(p), the ṽ has
to be perpendicular to the shifted circular Fermi
surface, which is the contour of ε̃(p). This fact
will be useful later when we evaluate the velocity
component vx.
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