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Cold atoms embedded in a degenerate Fermi system interact by a fermionic analog of the Casimir
force, in which the fermions play the role of photons. The fermion-mediated RKKY interaction is
an attraction of a —1/r form at distances shorter than the Fermi wavelength. While under realistic
conditions the interaction strength is too weak to support hydrogenic two-particle bound states,
the three-body bound states can have a considerably higher degree of stability. As a result, the
trimer bound states can form even when the dimer states are unstable. We analyze three-body
states associated with “figure-eight” periodic orbits of the classical problem and show that they are
more stable than those associated with circular orbits. The spectra of resonances associated with
the discrete energies of these states bear distinct signatures of the figure-eight braiding dynamics.

I. INTRODUCTION

One of the remarkable predictions of quantum theory
is that when the interactions between particles are not
strong enough to support a two-body bound state, they
may nonetheless support three-body bound states. A cel-
ebrated example of this interesting behavior is Efimov
trimers formed by particles interacting through short-
range attractive interactions that are nearly resonant!:2.
In this case, the three-body bound states, which form
even though the two-body bound states are unstable,
have a peculiar nested shell structure related to “discrete
scale invariance” and limit cycles in the renormalization
group®®. These and other interesting properties have
been a focus of active research in nuclear and cold atom
physics, culminating in recent observations of a hierarchy
of Efimov states in cold atom systems® 8.

Cold atom systems also provide a unique platform to
investigate other interesting few-body states. Here we
discuss bound states of two and three bosonic particles
embedded in a degenerate Fermi sea of cold atoms. A
fermion-mediated interaction in this case arises through
the so-called RKKY mechanism® !, illustrated in Fig.1
(a). The RKKY interaction takes the form

sin(2kp R) — 2kp R cos(2kp R)
o 7 (@)

where kg is the Fermi momentum, and the interac-
tion strength o depends on the boson-fermion scatter-
ing length and particle masses, as discussed below. The
fermion-mediated RKKY interaction between bosonic
atoms was demonstrated in recent experiments with
Bose-Einstein condensate of caesium atoms embedded in
a degenerate Fermi gas of lithium atoms'2. Interestingly,
this interaction is a 1/r power-law at short distances:

U(R) = —

«
R?
The power-law character of interaction at 2kp R < 1 and
its sign (attraction) can be interpreted as a fermionic
Casimir effect. The Casimir interaction between two
bodies (or, atoms) arises due to scattering of virtual pho-
tons. For each of the bodies, angular distribution of the

UR)=—-=, 2kpR<1. (2)

flux of incident virtual photons is somewhat anisotropic
due to the presence of a second body, giving rise to a
net attraction force. For fermionic paticles, this is illus-
trated in Fig.1 (a). The fermionic Casimir effect was also

analyzed in other condensed matter systems'?.

Naturally, the behavior U(R) ~ —1/R prompts the
question of whether the two-particle bound states of a hy-
drogenic type, pictured schematically in Fig.1 (b), can oc-
cur. We argue below that, while the interaction strength
« can be tuned by varying the fermion density and the
boson-fermion scattering length, under realistic condi-
tions it is too weak to support the two-body bound states.
However, we find that the requirements for the formation
of three-body bound states are not as stringent; and such
states can indeed occur under realistic conditions.

As we will see, the three-body states originating from
the RKKY interaction have interesting properties that
are quite distinct from those of the trimers studied pre-
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FIG. 1: (a) Schematic of attractive force between bosons (yel-
low), mediated by the scattering of fermions (red). (b) A two-
body orbit. (c) A circular three-body orbit. (d) A figure-eight
three-body orbit.



viously. As appropriate for the bound states supported
by a long-range attraction, the underlying physics can be
best understood in a quasiclassical framework. Below, we
apply the quasiclassical quantization using the Gutzwiller
trace formula framework. We consider the two simplest
periodic orbits of a three-body problem: the circular one
and the figure-eight orbit'® pictured in Fig.1 (c) and (d),
respectively. For both orbits the dynamics is locally sta-
ble, such that small perturbations remain small at all
times.

The figure-eight orbit is an interesting solution to the
planar three-body problem in which three equal mass
particles travel around a figure-eight curve with time
shifts equal to 1/3 of the period, as illustrated in Fig.1(d).
It is the simplest periodic orbit in a large family discov-
ered by Moore'®. Originally it was located numerically
using a functional gradient descent procedure described
in Sec.IV; its existence was later confirmed by a rigor-
ous analysis'®. The circular orbits share these properties
with the figure-eight orbits.

The analysis of the quantum states associated with
these orbits predicts Rydberg-like energy spectra

a2m

E,=-C——,
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where the prefactor C' depends on the orbit geometry;
n is an integer taking all positive values n > 1 for dis-
tinguishable particles, and values n = 1 4 3k for iden-
tical bosonic particles. The energy spectrum, Eq.(3), is
written in the form that facilitates comparison with the
conventional Rydberg spectrum, which for two particles
of equal masses is given by Eq.(3) with C = 1. For the
circular-orbit three-body dynamics we find C' = 9; for the
figure-eight orbit we find C' = 34. Comparing to the two-
body hydrogenic spectrum given by Eq.(3) with C' = 1,
we see that the three-body states are considerably more
stable than the two-body states. Indeed, the binding
energy is nearly ten times greater for the circular-orbit
three-body states than for the two-body states, whereas
for the figure-eight orbit it is more than 30 times greater
than the two-body binding energy.

Importantly, a larger energy scale translates into a
smaller orbit radius. As discussed below, for realistic o
values the spatial extent of hydrogenic two-body states
exceeds the Fermi wavelength, i.e. it falls outside the
range 2kp R < 1 in which the fermion-mediated interac-
tion takes on the —1/r form. In contrast, for three-body
states the system parameters can be tuned to push the
orbit radius under the 2kpR < 1 bound, which guaran-
tees the stability of these states.

Stronger binding for the figure-eight states as com-
pared to the circular-orbit states can be understood in
terms of the particles’ braiding dynamics illustrated in
Fig.2. For the figure-eight orbit the dynamics is such
that the three particles come much closer to each other
than when they are moving along the circular orbit.
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FIG. 2: Braiding dynamics of the figure-eight orbit. The
trajectories of the three particles over one full classical period,
T, is shown (left). After time 7" = T'/3 the indistinguishable
particles return to the original configuration. The explicit
braiding of the three states is shown in the lower panel.

II. THE TWO-BODY STATES

For a quantitative estimate we use the parameter
values from recent experiment in which the fermion-
mediated interaction was observed'?. The Hamiltonian
for bosons embedded in a Fermi sea is of the form

H=Hp+ Hp + Hint 4)

In a second-quantized form, the fermion and boson terms
read

2
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where gpp = WZ% is the intra-species coupling con-
stant, agp is the corresponding scattering length, and



mp(r) is the boson (fermion) mass. For our purposes,
however, the inter-species interaction term is most im-
portant:

Hint = g1 / Byt (r)6! (Fo(r)e(r), gnr =

Ty
(6)
with app the inter-species scattering length, and m, =
mpmp/(mp + mp) is the reduced mass. The fermion-
mediated interaction can be obtained by integrating out
the fermion degrees of freedom. To lowest order in the
coupling gz, this gives an effective bosonic interaction'*

e 5 [ )t (U =)o) (1)

where U(R) is the RKKY interaction potential given in
Eq.(1) with the coupling strength

2
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where kg is the Fermi momentum.

For the system studied in Ref.12, the bosons are 33Cs
and the fermions are Li. Takingmpg = 113my and mp =
6m,, where m, is the proton mass, gives the reduced

~, 1136 ~ :
mass My ~ myp ~ 5.7m, and the coupling strength

27T7L2(J,BF
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For small R, by carrying out the expansion to lowest
order in 2kp R < 1,

sin 2kp R — 2kp R cos QkFR (2kp)3 (10)
R4 3R’
we can write U(R) as a “gravitation” potential
2 3 2.2 1.3
gsrmrky o happky
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where we substituted the expression for the interspecies
interaction strength ggr, Eq.(9). The power-law charac-
ter of the interaction and its sign can be understood in
terms of the fermionic Casimir force as discussed above.

With this effective interaction, we can analyze bound
states for two and three bosonic particles. Two interact-
ing particles are described by the Hamiltonian

H = &—F&—FU(’IH—’I"Q)

2m  2m (12)

where from now on m labels the bosonic mass. The dis-
crete energy spectrum is found readily by separating the
center of mass motion, which gives a hydrogenic Rydberg
formula with a reduced mass
1 a%m
E’I’L = —— — n =

1 1,2,3...

(13)
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With this, we estimate the ground state frequency v, =
|E1]
bre as
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where we have chosen to normalize the scattering length
apr and the Fermi wavevector kr by Bohr’s radius ag

o (14)

and k;?) ~ mpum~!, the value from Ref.12. Choosing
agpr = 100ag and krp = 10k;9), we find from Eq.(14)

the value v; = 1.56 kHz, or in units of temperature,
hvy /kp ~ 1.16 - 1078 K.

Now we must check whether these two-body states are
sufficiently tightly bound to fall in the 2kp R < 1 range
of distances, in which the RKKY interaction is of a 1/r
form. We estimate the typical separation between bosons
by taking it to be the Bohr’s radius evaluated for a re-
duced mass value:

3
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Then for the quantity 2kpR, which we previously ap-
proximated to be small, we have
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Choosing a realistic value for the interspecies scattering
length apr = 100ap and (0) = 10 as before, we find

2krp Ry ~ 16. This value is too large to justify the ap-
proximation 2kpR < 1, indicating that in this case the
two-body bound states do not occur.

The conditions for confinement can be relaxed by tun-
ing system parameters. Indeed, choosing higher values
apr = 500ag and kp = 20k1(£),
frequency value

we find a fairly large

v =6.24-10" Hz, (17)
which in units of temperature is hiy /kp = 4.6 - 1074 K.
At these values, we also find

2krp Ry = 0.16, (18)
which is justifiably small. However, at present accessing
such high values of agr and kr may be challenging.

III. THE THREE-BODY STATES

Next, we consider the three-body states and argue that
in this case the conditions for reaching bound states be-
come less stringent. The three-body states are described



by the Hamiltonian
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H(r;,p;) i,i' =1,2,3.
(19)

The long-range character of the interaction suggests us-
ing the quasiclassical method, in which the bound states
arise from quantized periodic orbits. However, in con-
trast to the two-body problem, the three-body problem
is non-integrable; as a result, the dynamics is a chaotic
in most of the phase space. Yet, islands of stability as-
sociated with certain periodic orbits are known to exist,
giving rise to families of discrete states. Here we consider
such discrete states for the two types of periodic orbits
pictured in Fig.1 (c) and (d): the circular orbits and the
figure-eight orbits.

The figure-eight orbit is unique up to symmetries of the
equations of motion, which include translation, rotation,
and rescaling of the r; and p, variables

1
=ri, pi—p’p;, H—pBH (20)
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(which is a symmetry for the problem with the Newto-
nian interaction U(r) = —a/r). A remarkable property
of the figure-eight orbits is that they are linearly stable,
which is generally rare for periodic orbits of the three-
body problem. The linear stability property was demon-
strated in Refs.!”!'® through verifying that all eigenvalues
of the stability matrix lie on the unit circle.

Here, we analyze the three-body bound states using the
Gutzwiller’s semiclassical quantization of non-integrable
Hamiltonian systems'®. The Gutzwiller’s approach iden-
tifies the contribution to the density of states due to the
quantum states associated with periodic orbits, allow-
ing one to separate the discrete states from the chaotic
continuum. We apply this approach to the figure-eight
orbit, first considering the case where the particles are
distinguishable, such that the period of the orbit equals
the time it takes for each particle to undergo a full rev-
olution. We then consider the case of indistinguishable
particles. In this case, the period is reduced by 1/3, since
the particles reach a permuted version of the initial point
in phase space, and thus the same quantum state, after
a third of the period.

As a quick reminder, the Gutzwiller trace formula
approximates the density of states of a non-integrable
Hamiltonian system as'?

) + Re Z - ZA,M@”?’ EE(91)

where p sums over all primitive (non-repeated) periodic
orbits with energy E, period T}, action S, = [p - dq,
and r sums over all repetitions of a primitive orbit.
Here o0, is the Maslov index for the r-th repetition of
the primitive orbit p, see Ref.20. The amplitude factor
Ay, = |det(M} —1)|~'/2 is a function of the stability, or

T, —

D(E) =

monodromy, matrix M, that describes the local flow lin-
earized about the primitive orbit p. The quantity D(FE) is
the average density of states of the system which depends
smoothly on energy (the Thomas-Fermi contribution as-
sociated with the chaotic states). In our calculations, we
will disregard this term because we care only about the
oscillatory contribution to the density of states, which
arises from the sum over classical periodic orbits. For
simplicity, we set the amplitude factor A, , =1 and also
assume the Maslov index to be additive over successive
repetitions r of a primitive orbit p; denoting the index for
one revolution of the orbit as 1 = o1 we write oy, = 710,
The oscillatory contribution to the density of states is
then given by a sum of terms multiplicative in r:

= Re Z Zexp[zr(p—'u;)]. (22)

The validity of the simplifying assumptions that lead to
Eq.(22) will be analyzed elsewhere.

We first consider the figure-eight orbits for distinguish-
able particles. Due to the scaling symmetry of the three-
body problem, Eq.(20), there is a continuous family of
figure-eight orbits that are equivalent up to a rescaling.
If 7(t), p(t) is a figure-eight solution with energy E, pe-
riod T', and action S, then so is

v'(t) =B (B%t), pl(t) =B Pp(B¥Pt)  (23)

with energy E' = BE, period T' = 73/2T and action
S' = =128, for any f > 0. Since each orbit with en-
ergy E can contribute to the density of states only at
D(FE), our calculation must incorporate the scaling rela-
tions into the trace formula. To proceed, we calculate the
energy, period, and action of one particular “reference”
figure-eight orbit, which we label £, T and S. The scal-
ing factor g for a figure-eight orbit with energy F, taken
relative to an orbit with energy E, is given by g = E/E.
Then the action and the period of the rescaled orbit can
be written as

=528, Tg=p5""T. (24)

We can now write the oscillatory contribution to the den-
sity of states from the entire family of figure-eight orbits
as a function of F:

—3/2 )
ool (- 7))
exp |ir .
2
(25)
The sum over repetitions r is a geometric series which
equals

SD(E) =

e U o))
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The poles of Eq.(26) lead to delta functions in the density

5 1/2
of states whenever %( E) / — bx

6D(E) = Re (26)

= 2mn. Rearranging



this condition, we find the energies FE,, of the figure-eight
orbit with distinguishable particles, labeled by a quan-
tum number n:

ES?

S A— (27)
AR (n + )2

n

Using the numerical method described in Sec.IV, we find
E = —1.29350 and S = 16.1609(aum)/2. The values E
and S depend on the orbit used as an initial condition
in the relaxation dynamics. However, their product £S?
is a universal constant independent of the details of the
procedure. Evaluating

C = ES?/n? =34.23..., (28)

and setting the Maslov index to its one-body and two-
body value p = 4 (and shifting n + 1 — n) yields the
result in Eq.(3).

We now consider how Eq.(27) must be modified for
the case of indistinguishable particles. This is done by
accounting for the permutation symmetry of the three-
particle states. Consider a figure-eight orbit with total
period T and action S, where the particles start at the
initial point (r,p) in phase space. Then after a time
T'/3, the particles reach a permuted version of the initial
phase space point, (Pr, Pp), where P is the operator cor-
responding to the permutation (123). Since the particles
are indistinguishable, the system has reached a quantum
state which is identical to the initial state, and we can
think of T'/3 as the new period of the system. Then the
action of the system becomes S/3. Since the Maslov in-
dex for the modified orbit is one third of the value for
the original orbit, we replace S with S/3 and p with /3
in Eq.(27). This yields the spectrum in Eq.(3) with n
taking values 1, 4, 7, 10, and so on.

Another way to arrive at this result is to consider the
ground state for distinguishable particles for which the
wavefunction is nodeless and is therefore identical to that
for the ground state of bosonic particles. The number of
nodes for the excited states, from permutation symmetry,
must equal 3k for some positive integer k value, which
leads to Eq.(3) with n =14 3k as above.

Our analysis of the figure-eight orbit can be easily ex-
tended to circular orbits, where three particles travel
along a circular path with fixed time shifts equal to 1/3 of
the period [Fig.1 (c)]. This orbit is known to be stable!®,
and its permutation symmetry is identical to that of the
figure-eight orbit. In the case of distinguishable particles,
we need only calculate £ and S and plug these values
into Eq.(27). In the case of indistinguishable particles,
we must also consider how the period of the orbit and
therefore S are modified due to permutation symmetry.

For the case of distinguishable particles, we find values

_ 126
fo y e 5 =2m(332am)" /2, (29)

which gives E, = —9a?m/4h*(n+ %)2, which is nothing
but Eq.(3) with C = 9. For identical bosonic particles, we
account for permutation symmetry as above, noting that
the ground state, which is nodeless, can be populated by
three bosons. This again yields Eq.(3) with n replaced
with 1+ 3k.

Because of the inverse relation between energy and dis-
tance, larger binding energies translate into smaller spa-
tial scales for the orbits. Starting from the relation in
Eq.16 and rescaling it by the factors of C' = 9 and C =~ 34
for the two types of orbits gives

1 ap 2 k(o) ?
2kpR0:61.61-107 <W> ﬁ : (30)

Choosing the same values for the interspecies scattering
length and the Fermi momentum as above, apr = 100ag
and % = 10 as before, we find 2krRy S 1 for the

circulaFr orbit and 2kpRy < 1 for the figure-eight orbit.
The small values of 2kp Ry justify our U(R) ~ —1/R
approximation. Tighter confinement of the three-body
states as compared to the two-body states indicates their
higher stability.

We attribute the higher stability of the figure-eight
states, as compared to that of circular orbits, to the “in-
tertwining” character of the figure-eight dynamics that
brings particles much closer to each other than for other
types of orbits. This property, as well as other interesting
properties such as the braiding character of the dynam-
ics, illustrated in Fig.2, makes these states particularly
well-suited for exploring non-Efimov trimer states.

More generally, our analysis can be applied to any orbit
of the n-body problem, since the derivation of Eq.(27)
depends only on the scaling properties of the system, and
not on the number of particles. Interestingly, the figure-
eight orbit is known to exist in the n-body problem for all
odd n > 324, and one could thus use the same method
to calculate the spectra of n-body bound states of the
figure-eight orbit. Quantum states associated with these
orbits, if realized in experiment, can provide a unique
opportunity to demonstrate braiding that results directly
from unitary quantum evolution that does not depend on
external driving.

We are grateful to Alexander Turbiner, Chang Chin
and Vladan Vuletic for useful discussions.
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IV. APPENDIX: ORBIT RELAXATION

The Gutzwiller Trace formula relies on quantities such
as the action, energy, and stability matrix eigenvalues
of the periodic orbits of a dynamical system. To ex-
tract these quantities for a periodic orbit of the planar
three-body problem, we require a numerical solution of
the orbit, since in general no closed-form solution exists.
Here, we describe a numerical “relaxation” procedure for
locating periodic orbits of the planar n-body problem in
phase space, based off of work by Moore!®. The proce-
dure is a functional gradient descent that minimizes the
action functional S[ry(t)...r,(t)], where r1(t)... 7 (%)
are the trajectories of n point particles each with mass
m. We start by choosing fictional periodic orbits for each

particle. To each orbit we apply a functional differential
equation in fictional time 7:

dri(t) d?ri(t) .
= me ZFij(t) , 4,7 =1.n,
J#i
31)
where F;;(t) = —a% is the force from particle

J acting on particle ¢ at time ¢, and v is a parameter that
controls the descent rate. Once dr;(t)/dr = 0 for each
r;(t), the procedure has converged upon solutions to the
equations of motion, since md?r;(t)/dt*> = > i Fij(t).
The right hand side of Eq.(31) can be rewritten as
—LVS[ri(t)...ra(t)], where VS is the functional gra-
dient or the variational derivative of S. The procedure
is then a functional gradient descent which decreases the
action at each step, until the procedure converges and the
action reaches a local minimum. As described by Moore,
applying the procedure leads to a few possibilities, one
of which is the convergence to a genuine periodic orbit
of the system. In this case, the nature of the solution
is determined by the topology of the initial orbit. In
particular, if we plot the orbits of n bodies in the plane
against time, the orbits draw out a braid of n strands in
three-dimensional space-time. This braid is a topological
classification of the motion which remains constant over
the course of relaxation, as long as no collisions between
particles occur. Other possibilities of applying relxation
are that two or more of the particles collide, causing a
change in topology, or that one or more of the particles
escapes to infinity. Escape occurs when the braid is sep-
arable, i.e when the strands can be separated into two or
more isolated subsets. For 1/r potentials, certain braids
always lead to collision, forbidding any solution from hav-
ing that braid-type (the same is not true of “strong-force”
1/7? potentials, where there is a solution for every braid).
The reasons for this are discussed in detail by Moore and
will not be the subject of this description. In summary,
the relaxation method is a relatively fast, accurate way
of locating solutions to the planar n-body problem of a
desired topology, allowing us to obtain the quantities nec-
essary for the Gutzwiller Trace formula. For instance, we
can easily locate the three-body figure-eight solution by
choosing initial trajectories of the form:

(1) — sin (t — ¢

1) <sm( — %’r) coss(t - 2;)) (32)
_ sin (¢)

m2(t) = (sm (t) cos (t)) (33)
B sin (t + 2)

r3(t) (sin (t+2) Coss(t + 2;)) (34)

for 0 < t < 2w, where the trajectories are overlapping
figure-eight orbits with period 27, phase-shifted from one
another by 2T. Applying the relaxation method con-
verges to the true figure-eight solution with period 27w
and energy -1.2935 (for a« = 1,m = 1).
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