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In the era of noisy-intermediate-scale quantum computers, we expect to see quantum devices with in-
creasing numbers of qubits emerge in the foreseeable future. To practically run quantum programs, logical
qubits have to be mapped to the physical qubits by a qubit allocation algorithm. However, on present day
devices, qubits differ by their error rate and connectivity. Here, we establish and demonstrate on current
experimental devices a new allocation algorithm that combines the simulated annealing method with local
search of the solution space using Dijkstra’s algorithm. Our algorithm takes into account the weighted
connectivity constraints of both the quantum hardware and the quantum program being compiled. New
quantum programs will enable unprecedented developments in physics, chemistry, and materials science
and our work offers an important new pathway toward optimizing compilers for quantum programs.

+It is the general belief that quantum information science
will enable unprecedented developments in many fields
of research, including physics, chemistry [1], biology [2]
and materials sciences [3]. The existing quantum technol-
ogy, recently termed “noisy-intermediate scale quantum”
(NISQ) technology [4], has already allowed researchers to
realize systems with fewer than 100 qubits in experimental
laboratories [5–7] and inspired many theoretical develop-
ments [8–15].

One of the current challenges of quantum computing
is that quantum computations are noisy and have nonzero
rates of error. These error rates are due to multiple factors:
qubits can only stay in a mixed state for a certain period
of time, the entangling and rotational operations are sus-
ceptible to accuracy errors, and subtle changes in the sur-
rounding environment can affect qubit operation accuracy.
Reducing the error rates of the executions is essential for
maximizing the reliability of the results produced by NISQ
computers.

One way to efficently reduce noise for quantum com-
putations is by introducing a pre-processing step to opti-
mize or compile the quantum circuit to the specifications of
the underlying hardware. One important optimization step
within the compiler is qubit allocation [16]. The alloca-
tion of qubits is the process of mapping logical qubits in
the quantum program to physical qubits on the hardware.
Qubit allocation must satisfy the connectivity constraints
of both the program and the hardware while minimizing
the total error rate of the computation.

There are several proposed methods for solving the qubit
allocation problem. Recent studies [16–19] have proposed
minimizing the number of SWAP instructions for efficient
qubit allocation. The introduction of SWAP gates are re-
quired on NISQ devices due to the limited connectivity
of the actual device. However, additional SWAP gates in-
crease the number of operations in the circuit, as well as
the depth of the circuit. While the number of SWAPs in a
circuit strongly affects the total error rate of the computa-
tion, it is not the only factor the compiler should consider
when allocating qubits. As has been recently discussed in
Ref. [20], since in reality not all qubits are created equal,

the assumption of a uniform behavior of the qubits is not
justified. To this end, Ref. [20] introduced the variation-
aware qubit allocation (VQA) policy that considers the dif-
ferent error rates of the individual qubits during allocation.
VQA has been shown to improve the overall reliability of
computation results significantly.

In this letter, we propose an algorithm that sets a new
standard for compilers for NISQ-era computers. The pro-
posed algorithm employs the method of simulated anneal-
ing [21] to sample the vast search space of qubit alloca-
tion. We increase the reliability of the simulated anneal-
ing by complementing it with a bounded search of the lo-
cal solution space using Dijkstra’s algorithm [22]. The
proposed algorithm is hardware-agnostic, since it can be
parameterized with the particulars of any quantum com-
puting architecture. The algorithm is also tunable, allow-
ing users to trade additional compute time for better re-
sults. Additionally, we benchmark our algorithm and show
that the solutions proposed in this letter significantly im-
prove on existing methods. These benchmarks are one of
the first times a proposed quantum compiler has been for-
mally tested on physical hardware. Therefore, our proposed
solution pushes the field towards a more practical solution
to the qubit allocation problem.

In this letter, we consider quantum programs written in
the Quil [23] and OpenQASM [24] languages. We show an
example of a quantum program in Fig. 1 (b). For a given
quantum program P , let an allocation A be a mapping of
a set QL of logical qubits in P to distinct physical qubits
QP of a device.

A : QL →
P
QP . (1)

Further, we define as the size of an allocation |A| = |QP |,
which is the number of allocated qubits. The empty alloca-
tion A0 is the allocation for which |A0| = 0, and a full al-
location AF for P is an allocation where all logical qubits
are mapped to physical qubits QP . In addition, we define
a sub-allocation relation, @, such that for allocations AA

andAB ,AA @ AB if every mapping inAA is also present
in AB .
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OPENQASM 2.0;
include "qelib1.inc";
qreg q[16];
creg c[16];
cx q[12], q[3];
cx q[4], q[8];
cx q[13], q[0];
cx q[15], q[2];
cx q[1], q[8];

FIG. 1. (a): Layout of IBM 16Q Rueschlikon device,
showing variable fidelities and coupling graph. (b): Exam-
ple OpenQASM program, consiting of randomly generated
CNOTS. These programs will be discussed in more de-
tail in the benchmark section. (c) Schematic describing the
search space of the annealing algorithm discussed in this
paper. Importantly we notice the presense of local minima.
(d) Representation of the DAG, GP,D as constructed in the
local search algorithm.

As an abstract representation of different hardware de-
vices, we choose to represent different systems by a cou-
pling graph [16] GQP

= (QP , EQP
), where QP is the set

of physical qubits on the hardware, and EQP
is the set of

edges connecting the physical qubits. We illustrate the cou-
pling graph of a 16-qubit system in Fig. 1 (a). All edges
e ∈ EQP

have an associated error rate εe. The error rate εe
of an edge e ranges from 0 to 1. Due to the imperfection
of the NISQ devices, there is variation in the error rates of
different qubits and edges over time. These error rates are
measured during device calibrations and occasionally pub-
lished [20]. We further define the fidelity or reliability of

an edge as Fe = 1− εe and define as F (i) the fidelity of a
i-qubit gate when applied to the physical qubits.

Since most existing quantum computers use supercon-
ducting qubits [5–7], these systems are only able to exe-
cute two-qubit gates on immediately connected qubits as
depicted in Fig. 1 (a). Therefore, the highest connectivity
is usually two and we can restrict ourselves to i = {1, 2}.

Further, we define the total fidelity of the computation as
the product of all fidelities ofN1 single-qubit gates andN2

two-qubit gates that are applied on the physical hardware
devices during runtime of the quantum program

Ftot =
N2∏
i=1

F (2)
i ×

N1∏
j=1

F (1)
j . (2)

In general two-qubit error rates are one magnitude higher
than single qubit error rates, and the total error rate Etot is
therefore dominated by the two-qubit error rates. In this
letter, we develop an algorithm that maximizes the total
fidelity for hardware specific connectivity constraints by
minimizing the total error rate. In Fig. 1 (c), we illustrate
the complex fidelity landscape of the qubit allocation prob-
lem schematically.

To resolve situations where two logically adjacent qubits
are not physically connected on the specific hardware,
SWAP gates have to be inserted into the quantum pro-
gram [16, 20], which introduces additional computational
overhead. To compute the optimal SWAP paths we calcu-
late the optimal SWAP path for every ordered pair of two
physical qubits on the hardware as a pre-processing step in
O(|QP |3) time using the Floyd-Warshall algorithm [25].
This is similar to the analysis done in Ref. [20], which uses
Dijkstra’s algorithm instead. For our algorithm, we sim-
plify the qubit allocation problem by considering SWAP
placement only in cases where swaps are necessary to sat-
isfy the connectivity constraints of the quantum devices,
and when they are necessary we insert them as late as pos-
sible. In the following, we call this policy connectivity-only
swap insertion [26]. This simplification makes the set of
necessary swaps necessary for a starting qubit allocation
computable in time linear with the size of the program.

The problem of qubit allocation with connectivity-only
SWAP insertion can be reduced to the problem of find-
ing the shortest weighted path in a directed acyclic graph
(DAG) [27],GD,P , which we illustrate in Fig. 1 (d). The set
of vertices of GP,D is the set of all possible allocations, in-
cluding partial allocations, for the quantum program P and
deviceD. Its set of edges is the set of all pairs of allocations
(A,A′) with |A|+ 1 = |A′| andA @ A′. Fig. 1 (d) illus-
trates several important properties of the graphGP,D. First,
the root of GP,D is the empty allocation, and every vertex
is a sub-allocation of all other vertices reachable from it.
Edges represent the extension of allocations by a single ad-
ditional qubit mapping. Furthermore, GP,D is acyclic be-
cause every vertex inGP,D is strictly larger than each of its
predecessors, and a vertex is a leaf if and only if it is a full
allocation.
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Each path from A0 to a full allocation AF represents a
sequence of decisions to allocate single qubits that together
form a full allocation, so GP,D represents every possible
way to create a full allocation starting from A0. To find
solutions to the qubit allocation problem, we need to find
paths that connect A0 to some AF . By appropriately con-
structing the edge weights in GP,D, we can ensure that the
weighted shortest paths end at the full allocation with the
highest fidelity.

Following Eq. 2, we define the upper bound FA for the
allocation A to be the total fidelity calculated using the
mappings in A, including any swaps they necessitate, and
by taking for all unallocated logical qubits the best pos-
sible physical qubits without considering connectivity or
uniqueness constraints. We notice that when the alloca-
tion is full, this bound is the true fidelity Ftot. Now let the
weight of edge (A,A′) be FA − FA′ . By the definition
of edges in GP,D, A′ contains every qubit allocation in A
plus one more. The the additional allocated qubit tightens
the calculated upper bound on the fidelity of gates, so FA′

must be less or equal to FA and the edge weight cannot be
negative. More generally, the weight of a path from S to T
is the sum of the weights of all edges in that path, which
collapses to FS − FT . The problem of optimal qubit al-
location with connectivity-only swap insertion is thereby
reduced to the problem of finding the shortest path in a
weighted DAG with positive edge weights. This problem
can be solved efficiently by Dijkstra’s algorithm [22].

Note that our qubit allocator is also able to handle arbi-
trary classical control flow [28]. The Quil language [23]
provides JUMP, JUMP-IF, and JUMP-UNLESS in-
structions that can transfer control flow elsewhere in the
program. Nevertheless, all considerations of control flow
are encapsulated in the calculations of the swap set and fi-
delity bound at each step of the local search. The higher
level qubit allocation algorithms are therefore agnostic to
the presence or absence of control flow. The details of how
we handle control flow will be published elsewhere.

As an optimization, the number of paths searched in the
DAG can be reduced by fixing the order in which qubits
are allocated, turning the GD,P into a tree G′D,P [29].
Our implementation heuristically chooses to allocate log-
ical qubits from most to least constrained. We define a log-
ical qubit to be more constrained than another if it appears
as the control in more two-qubit gates than the other. By al-
locating the most constrained qubits first, we minimize the
chance of an allocation we have spent a lot of time analyz-
ing becoming untenable due to unsatisfiable constraints.

In the worst case, when all possible allocations have
the same fidelity, Dijkstra’s algorithm is equivalent to a
breadth-first search [30]. For a device with QP phys-
ical qubits, the number of possible allocations of size
n is QP !

(QP−n)! , thus the number of edges traversed in
the worst case for a program with QL logical qubits is∑QL

n=1
QP !

(QP−n)!
. Current devices are sparsely connected and

have non-uniform qubit fidelities, so they are far from ex-
hibiting these worst-case properties. Djikstra’s algorithm
will not consider any vertex whose fidelity bound is lower
than the true optimal fidelity, so in practice the algorithm
might only visit a very small portion of the solution space
before finding the optimal solution. For all allocations to
have the same fidelity, either a device’s qubit connectivity
graph must be complete and all of its couplings must have
the same fidelities, or the connectivity graph of the logical
qubits must be symmetric, for example if each logical qubit
participates in a gate with each other logical qubit exactly
once and there are no additional gates.

Unfortunately, the existence of quantum programs that
can trigger the exponential behavior of the local search al-
gorithm make it unfit to serve as a complete practical solu-
tion. Nevertheless, this algorithm is very useful as a com-
ponent of such a solution.
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FIG. 2. Hybrid algorithm on a randomly generated 10-qubit,
30 CNOT Quil [23] circuit called q10c30 with n = 5, T0 = 1,
and τ = 12.5. 2.A shows the change in the temperature T as
the simulated annealing routine explores allocations. The
annealing data in graph 2.B shows the fidelity bounds of all
the partial allocations the hybrid algorithm explores, adding
one qubit for each round of annealing. Full allocations are
denoted by a star.

To this end, we introduce randomization using simulated
annealing [21] as a method of reducing the search space
of the local search algorithm. In the following, we refer to
this randomized optimization procedure combined with the
local search algorithm as the hybrid algorithm.

The hybrid algorithm finds a full allocation by running
the simulated annealing process on sets of progressively
larger partial allocations. For each proposed sub-allocation,
we run the local search for a fixed number of steps to
produce a refined estimate of the sub-allocation’s fidelity.
During each round of simulated annealing, we use the
Metropolis criterium [31] to accept sub-allocations: If a
proposed sub-allocation has a higher fidelity bound than
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the current sub-allocation, we accept it as a better start-
ing point for the local search. If it has a lower fidelity
bound, we accept it with a probability dependent on the fi-
delity difference to prevent the search from getting trapped
in a local minima as shown in Fig. 1 (c). The probability
of accepting a sub-allocation with lower estimated fidelity
also depends on the current temperature that we define as
T = T0 exp(−s/τ), where s is the iteration counter within
a simulated annealing process, T0 the initial temperature,
and the reduction of the temperature is given by τ as illus-
trated in Fig. 2 (a).

Initially, we run the local search algorithm for n steps
starting with the empty allocation to see if the local search
can find the optimal allocation in reasonable time without
the need for randomization. If this search fails, we use sim-
ulated annealing to allocate a single logical qubit. Simu-
lated annealing proposes potential allocations for this qubit
and uses local search to refine an upper bound on the cost
of a full allocation containing the proposed sub-allocation.
The algorithm adds one qubit at a time to the annealing
search as shown in Fig. 2 (b), where we show the fidelity
bounds of the allocations the hybrid algorithm explores
during a run on ten qubits. Each time local search is called
to measure the cost, it is also searching for potential full
allocations based on the proposed sub-allocation. Before
adding another qubit to the simulated annealing search, we
check whether any full allocations have been found.

If local search finds at least one full allocation during a
given round of simulated annealing, we return the full al-
location with the highest fidelity. For illustrative purposes,
we show a full run in Fig. 2 (b). When the temperature T
is higher, we are more likely to accept worse proposed al-
locations and when it is lower we tend to only accept better
or similar allocations. The idea motivating this design is
that as a simulated annealing round progresses, we want to
explore the solution space less and instead refine the best
solution found so far. This explains why there is a reduc-
tion in noise throughout each of the 10 annealing iterations
in Fig. 2 (b) as the respective temperatures plotted in Fig. 2
(a) decrease. Generally, we expect to see a downward trend
in fidelity bounds as new qubits are added to the search, as
shown in Fig. 2 (b), because larger allocations have tighter
upper bounds on total fidelity than smaller allocations. We
highlight that the simulated annealing process is easily par-
allelizable and can be run several times simultaneously.

Next, we compare our algorithms, both local search and
the hybrid algorithm, to other methods in the field. We fo-
cus on testing against publicly available tools provided by
IBM Q Experience by running randomly generated CNOT
circuits the Q16 Rueschlikon device. As there is no stan-
dard method for testing total circuit fidelity, we propose a
new benchmark solution. Our testing framework is as fol-
lows: first we create a randomly generated circuit contain-
ing only CNOT gates. Next we compile this circuit into a
device executable OpenQASM file through three methods:
IBM’s public compiler, our local search allocator, and our

hybrid algorithm with parameters n = 10, T0 = 10, and
τ = 25. Next, we run each of these compiled algorithms on
IBM’s hardware measuring one qubit at a time. We do this
to avoid noise associated with measuring multiple qubits
successively.

Since each circuit contains only CNOT gates, in princi-
ple the qubit measured should have 100% probability of
being measured in the ground state. Therefore, if a qubit
is measured in the excited state, we know this must be a
product of device noise. So, we define the measured error
of a circuit to be the number of total number of trials in
which each qubit involved in the circuit is measured to be
in the excited state. The percent error is the percentage of
incorrect measurements in all trials of a circuit. To mini-
mize noise associated with single qubit measurement, we
run the circuit 1024 times for each qubit involved in the
circuit, measuring the physical qubits one at a time.
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FIG. 3. Measured error by compiling a series of randomly
generated CNOT circuits using each method successively
and running IBM’s Q 16 device.

The violin plot in in Fig. 3 shows the distribution of
the measured error for each circuit compared by method,
where a single observation is computed by counting the
number of measurements in the excited state and divid-
ing by the total number trials (1024). The width of the
plot corresponds to the number of observations measured
at each value. Within each distribution is a standard box
plot, showing the median (denoted by a white dot) as well
as the first and and third quartiles. Our results presented in
Fig. 3 show that the local search method consistently has
a lower error rate than IBM’s public compiler, resulting in
more accurate measurements in every case. This advantage
tends to increase as the size of the circuit increases. The
hybrid algorithm tends in general to show more accurate
results compared to the IBM’s compiler as well, although
with more variability. All three algorithms resulted in a
high variability in measurement error. Some of these error
rates (greater than 0.7 in certain cases) suggest imprecision
in the listed measurement errors. These outliers seem to
be the result of device peculiarities, rather than the known
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errors referred to in this paper. These are exciting results
for the potential of NISQ-era devices, as they demonstrate
that we can reduce device noise by over a factor of 2 using
pre-processing.

NISQ-era computers will change the landscape of tech-
nology through their capability of solving complex com-
puter science problems that classical computers are unable
to solve efficiently [2]. We believe that the qubit alloca-
tion algorithms we propose in this paper can be used for
compilation on these intermediate-scale devices. As sub-
problems of qubit the allocation problem are NP-complete,
such as the SWAP minimization problem [16], the hybrid
algorithm uses a randomized search to efficiently search
the solution space while still obtaining a total fidelity close
to that of the optimal solution. The parameters of the hybrid
algorithm, n, T0, and τ allow users to trade off between
the time spent on allocation and total fidelity. The hybrid
algorithm generalizes both a pure simulated annealing ap-
proach when n = 0 and the local search algorithm when
n→∞.

Currently, there is ongoing debate and active research on
differing physical implementations of quantum computing
architectures [5] (i.e. superconductors vs. ion traps), which
each have different respective connectivity constraints be-
tween qubits. The hybrid algorithm proposed in this paper
is hardware-agnostic in that it works for any given coupling
graph and qubit fidelity data, but it also takes full advan-
tage of this hardware-specific information in its search for
optimal qubit allocations. We believe this dual nature of
hardware-agnosticism and hardware-awareness provides a
flexibility and sensitivity qualifying it as a practical tool
for reducing the noise of quantum computation on NISQ
computers.
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