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We present magneto-Raman scattering studies of electronic inter-Landau level excitations in quasi-
neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated
with these excitations is found to depend on the dielectric environment, on the index of Landau level
involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of
noninteracting massless Dirac electrons but is accounted for by theory when the effect of electron-electron
interaction is taken into account. Raman active, zero-momentum inter-Landau level excitations in graphene
are sensitive to electron-electron interactions due to the nonapplicability of the Kohn theorem in this
system, with a clearly nonparabolic dispersion relation.
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Single-particle electronic states in graphene follow the
linear relativistic-type dispersion with the speed of light c
replaced by the band velocity v ≈ c=300. Recently, how-
ever, much attention was paid to modification of the
dispersion relations and excitation spectra of quasiparticles
induced by electron-electron interactions [1–3]. Indeed,
pristine graphene can hardly be considered as a weakly
interacting system [4–6]. The dimensionless interaction
strength (ratio between typical Coulomb and kinetic
energies), given by the fine-structure constant α ≈ 1=137
in quantum electrodynamics, is rescaled in graphene to
ðc=vÞα ≈ 2. Screening (by a dielectric and/or conducting
environment) modifies the Coulomb interaction strength
in graphene, depending on its actual surrounding
(substrate) and/or on the degree of departure from
charge neutrality. In a uniform dielectric environment
characterized by a dielectric constant ε, the effective
fine-structure constant is αε ¼ ðc=vÞðα=εÞ. The renormal-
ization of graphene bands by electron-electron interactions
has mostly been studied without a magnetic field [3]. The
latter drastically modifies the electronic spectrum by
quantizing it into discrete and highly degenerate Landau
levels (LLs). The inter-LL excitations, i.e., the electron
excitations from filled to empty LL, are the collective
electronic modes [7,8] in any two-dimensional system,
and their understanding is fundamental for a variety of
quantum Hall effect phenomena [9]. The anticipated effects
[10–14] of electron-electron interaction on LL spectrum in
graphene have so far been little explored experimen-
tally [2,15].

In this Letter, we report on probing the inter-LL
excitations, with magneto-Raman scattering experiments
[16,17], in three graphene systems with different dielectric
environments. The measured spectrum of (Raman) inelastic
light scattering accompanied by such electronic excitations
provides information about their characteristic energies
and evolution with the magnetic field. The noninteracting
Dirac-like description of electrons fails to account for the
full set of our experimental observations. An effective
velocity associated with each inter-LL transition is not a
single value but (i) depends on the dielectric environment,
the departure from the noninteracting picture being most
pronounced for suspended graphene, weaker for graphene
encapsulated in hexagonal boron nitride, and rather small
for graphene on graphite, (ii) varies logarithmically with
the magnetic field, and (iii) is higher for transitions
involving higher LLs. These observations can be qualita-
tively described in the Hartree-Fock approximation [10–12]
or by the first-order perturbation theory (FOPT) in αε
[4,13]. In particular, the absence of full cancellation
between vertex and self-energy corrections implies viola-
tion of the Kohn theorem [18] for the Dirac spectrum.
Notably, the vertex corrections invert the tendency of
lowering the electron velocity with energy, resulting from
the self-energy terms, which accounts for feature (iii); see
also Refs. [2,15]. However, FOPT fails on the quantitative
level when αε is not small. Beyond FOPT, the velocity
renormalization can be addressed by the random-phase
approximation [19] (see also Ref. [5]), which indeed better
matches the experimental results. Under some additional
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assumptions, we estimate two relevant parameters, the band
width and bare band velocity, which define the renormal-
ized electronic dispersion.
Conventional absorption spectroscopy of inter-LL tran-

sitions in graphene [14] is restricted to far-infrared spectral
range (λ ∼ 100 μm) and does not offer the necessary spatial
resolution, otherwise required for probing small graphene
flakes. Better resolution is offered by visible light tech-
niques, such as Raman scattering, which is our method
of choice. The possibility of observing Raman scattering
from purely electronic, inter-LL excitations [16,17,20] is a
recent addition to the wide use of Raman scattering spectra
of phonons for the characterization of different graphene
structures [21,22]. We studied three distinct graphene
systems: suspended graphene (G-S), graphene encapsu-
lated in hexagonal boron nitride (G-BN), and graphene on
graphite (G-Gr). G-S was suspended over a circular pit
(8 μm in diameter) patterned on the surface of a Si=SiO2

substrate (see Refs. [17,23] for details of sample prepara-
tion). The G-BN structure consists of a graphene flake
transferred onto a ∼50 nm thick layer of hBN and then
covered by another hBN flake of the same thickness, all
together placed on a Si=SiO2 substrate (see Ref. [24] for
details on a similar structure). The G-Gr flake was
identified on the surface of freshly exfoliated natural
graphite via mapping the Raman scattering response
at a fixed magnetic field and searching for the position
with the spectral features characteristic for graphene (see
Refs. [25,26] for details of the procedure). The experi-
mental arrangements (Refs. [16,17] and the Supplemental
Material [27]) permitted Raman scattering experiments in
magnetic fields up to 14 T (supplied by a superconducting
coil, data collected for G-BN) or up to 29=30 T (supplied
by a resistive magnet, data collected for G-S and G-Gr), at
low temperatures (4 K) and with a spatial resolution of
∼1 μm (diameter of the laser spot on the sample). Though
the adequate electrical characterization of the investigated
samples was not possible, we assume here that all our three
graphene flakes are not far from being neutral systems; this
is supported by many other studies of similar structures
[23,24,28,29].
Besides the well-known spectral peaks due to phonons

[21,22,30], the magneto-Raman scattering spectra of each
of our graphene samples show other, well-resolved peaks
due to electronic inter-LL excitations, whose energies
depend distinctly on the magnetic field. Those features
are central for the present work. A collection of the related
experimental data is presented in Fig. 1. Within the single-
particle approximation, the electronic dispersion in gra-
phene is conical, EðkÞ ¼ �vk. When a magnetic field B is
applied perpendicularly to the graphene plane, the con-
tinuous energy spectrum transforms into a series of discrete
Landau levels (L�n) with energies E�n ¼ � ffiffiffiffiffiffi

2n
p

ℏv=lB
(here n ¼ 0; 1; 2;…, and lB¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðeBÞp

is the magnetic
length); see upper inset to Fig. 1. We limit our

considerations to the so-called symmetric L−n → Ln
(L−n;n) inter-LL transitions, which are expected to domi-
nate the electronic Raman scattering response of graphene
[20], and appear at energies ℏω−n;n ¼ 2En, approximately.
Tracing the ℏω−n;nðBÞ dependencies on the top of the gray
scale maps presented in Fig. 1, we recognize two transitions
in the spectra of both G-S and G-BN, L−1;1 and L−2;2. G-Gr
shows much richer spectra: a larger number of symmetric
L−n;n transitions (at least up to n ¼ 5) as well as other,
asymmetric, Δjnj ¼ 1 transitions. These latter transitions
were predicted to be weakly allowed [20] but are

FIG. 1 (color online). Gray scale map of the electronic response
in the magneto-Raman scattering spectra as a function of the
magnetic field (B) for suspended graphene (G-S, top panel),
graphene encapsulated in hBN (G-BN, middle panel), and
graphene on graphite (G-Gr, bottom panel). Each map represents
the collection of differential spectra (the B ¼ 0 spectrum has been
subtracted from each spectrum measured in a magnetic field B).
Dashed white lines account for the B evolutions of the two
most pronounced inter-LL excitations, expected within a single-
particle approach, when assuming a B-independent but different
for each sample band velocity v. Upper inset: scheme of the
Landau level fan chart in graphene; two, L−1;1 and L−2;2, inter-
Landau level excitations, well visible in the experiments on all
samples, are indicated by red arrows. Middle panel inset:
characteristic spectra due to L−1;1 excitations measured at
B ¼ 8 T for G-Gr (black symbols), G-BN (red symbols), and
G-S (blue symbols). Gray curves are Lorentzian functions. Light
gray horizontal ribbons on gray scale maps are to mask the
(residual) contribution to Raman scattering due to phonons of
graphene or graphite at ∼1600 and ∼2700 cm−1 as well as of the
Si substrate (∼520 and ∼1000 cm−1 of hBN at ∼1370 cm−1.
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nevertheless well seen in G-Gr, surprisingly, in a wide
range of magnetic fields [25,26]. Notably the asymmetric
transitions effectively couple to the E2g phonon of graphene
and are also visible in two other samples but only in the
close vicinity of the phonon peak. Aiming at a systematic
study of the spectra in different dielectric environments, we
focus on the L−1;1 and L−2;2, which are clearly seen in all
three cases in a wide range of the magnetic field. In all our
samples, the L−1;1 transition starts to be visible at magnetic
fields as low as ∼2.5 T, at energies Eons ∼ 1000 cm−1. This
observation defines the upper bound for the Fermi energy,
EF < Eons=2≃ 60 meV, and confirms a relatively low
doping in the studied graphene structures.
From the inspection of the ℏω−n;nðBÞ traces drawn in

Fig. 1, we easily identify the measured transitions, but at the
same time notice some inconsistencies. First, using such an
approximate data modeling, we are forced to use different
velocities for each of our graphene samples: v is set to
1.30 × 106, 1.15 × 106, and 1.03 × 106 m=s forG-S,G-BN,
and G-Gr, respectively. Different mean velocities for each
graphene specimen are directly visualized in the lower inset
to Fig. 1: at fixed B but for different samples the L−1;1
transitions appear at clearly distinct energies. Moreover, the
above v parameters can only be considered as the mean
velocity values, averaged over different transitions and over
the range of magnetic fields applied; note, e.g., rather
pronounced deviations between the white traces and the
central peak positions for G-S (top panel of Fig. 1).
The shortcomings of the above data modeling are

emphasized in Fig. 2, the central figure of this Letter.
Data points (symbols) in this figure represent the velocity
parameter that we associate with each observed transition
and at each value of the magnetic field applied: vexptn ¼
ωexpt
−n;nlB=

ffiffiffiffiffiffi
8n

p
, where ℏωexpt

−n;n are the measured transition
energies (central positions of the Raman scattering peaks).
In the noninteracting case, all these velocities should
collapse onto one single value. The extracted velocities
vexptn , for different L−n;n transitions and for our three
graphene structures, are plotted in Fig. 2 as functions of
lnðlB0

=lBÞ ¼ ln
ffiffiffiffiffiffiffiffiffiffiffi
B=B0

p
, where the reference magnetic

field has been arbitrarily set to B0 ¼ 1 T. Each set of
vexptn versus lnðlB0

=lBÞ data can be fairly approximated by a
linear function. The vexptn traces are parallel within a given
graphene structure but show different slopes for different
samples. These features point towards the effects of
renormalization of the electronic velocity and of energies
of inter-LL transitions by the electron-electron interaction.
For neutral graphene at B ¼ 0, the FOPT in

αε ¼ ðc=v0Þðα=εÞ gives the correction to the velocity v [4],

v
v0

¼ 1 −
αε
4
ln
jEj
W

; v ¼ v0 −
αc
4ε

ln
jEj
W

; ð1Þ

which depends on the electron energy E, counted from
the Dirac point. Here, v0 is the bare velocity, and W is the

high-energy cutoff, which is of the order of the electronic
bandwidth (a few eV). The dielectric constant ε is that
of the surrounding medium for the suspended and
encapsulated graphene. In a magnetic field, the FOPT
calculation of the correction to the transition energy
ℏω−n;n, performed analogously to that of Ref. [13], gives
the following correction to the velocity (see the
Supplemental Material [27]):

vn ≡ ω−n;nlBffiffiffiffiffiffi
8n

p ¼ v0 þ
αc
4ε

�
L − ln

lB0

lB

�
þ αc

4ε
Cn; ð2Þ

where L ¼ lnðWlB0
=ℏv0Þ is a constant resulting from

our choice of lB0
to set the horizontal scale in Fig. 2,

and the numerical coefficients are C1 ¼ −0.398 and
C2 ¼ −0.197. The coefficient in front of the logarithm,
which determines the slopes in Fig. 2, is the same as in
Eq. (1). This is because the logarithmic part originates
from self-energy corrections due to interaction with states
deep in the valence band, which are not sensitive to the
Landau quantization and can be taken as n independent.
The constants Cn include (i) the residual part of the self-
energies, resulting from interaction with states near the

FIG. 2 (color online). Magnetic field dependence (B0 ¼ 1 T) of
the velocities associated with L−1;1 and L−2;2 inter-Landau level
excitations shown with, correspondingly, open circles (solid
lines) and open stars (dashed lines), as derived from the experi-
ment (data modeling), for G-S, G-hBN, and G-Gr specimens.
Straight lines follow Eq. (4) [see also Eq. (2)], with ε� ¼ 3.9, 7.0,
and 12 for G-S, G-hBN, and G-Gr species, respectively, and the
corresponding values for εδv ¼ 1.3, 3.7, and 12.
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Fermi level, for which the level discreteness is important,
and (ii) the vertex corrections (excitonic effects) [13].
Equation (2) accounts qualitatively for the main exper-

imental trends seen in Fig. 2. For each sample (ε), the
dependencies of vexptn versus lnðlB0

=lBÞ represent a set of
parallel lines. The slope of these lines [∝ 1=ε according to
Eq. (2)] correlates with the progressive increase of screen-
ing when shifting from G-S (ε ¼ 1) to G-BN (εhBN ≈ 5)
and to G-Gr where screening by the conducting substrate
can be viewed as a large effective ε. Notably, Eq. (2) also
predicts v2 > v1 for the same values of ε and B (as
C2 > C1), which would be the opposite if one simply
substituted E → E0

n in Eq. (1). This is due to vertex
corrections. According to Eq. (2), δv21 ≡ v2 − v1 ¼
ðαc=4εÞðC2 − C1Þ, which also agrees with the trend seen
in Fig. 2, the decrease of δvexpt21 with increasing ε.
However, Eqs. (1) and (2) fail to reproduce quantitatively

the data shown in Fig. 2. This is with regard to both the
apparent amplitude of the slopes of vexptn ∝ lnðBÞ depend-
encies as well as the observed values of the relative shift
δvexpt21 between the velocities associated with L1 and L2

Landau levels.
If one used Eq. (2) with some adjustable ε� (effective

dielectric constant) instead of ε, the slopes in Fig. 2 would
correspond respectively to ε� ¼ 3.9� 0.3, 7.0� 0.5, and
12.0� 1.0 for G-S, G-BN, and G-Gr, quite different from
the known ε ¼ 1 and 5 for G-S and G-BN. This is not very
surprising, as the perturbative Eq. (2) does not have to work
when the expansion parameter αε (exceeding 2 for ε ¼ 1) is
not small. Fortunately, graphene offers another expansion
parameter that can control the perturbation theory even
when αε ∼ 1. This parameter is identified as 1=N, where N
is the number of electronic species, N ¼ 4 for graphene
(the combined spin and valley degeneracy). In the 1=N
expansion, an infinite number of terms of the perturbation
theory is resummed to all orders in αε, selecting only those
corresponding to the leading order in 1=N [19]. The
resulting series is equivalent to random-phase approxima-
tion, and it was explicitly shown that the subleading
contribution is indeed small [5].
For the velocity renormalization at B ¼ 0, the 1=N

expansion boils down to the modification (depending on
α) of the coefficient in front of the logarithm in Eq. (1) [19].
For moderate values of α < 2.5, typical for graphene, this
modified coefficient can be well approximated (with 1%
precision) by [31]

v0αε
4

→
v0αε

4ð1þ 1.28αεÞ
¼ αc

4ðεþ 1.28αc=v0Þ
: ð3Þ

The above result can be seen as the added screening
capacity ε → ε1=N ¼ εþ 1.28αc=v0 by the graphene
Dirac electrons themselves. Assuming v0 ¼ 0.88 ×
106 m=s (see below), we obtain ε1=N ¼ 4.16 for ε ¼ 1
(G-S) and 8.16 for ε ¼ 5 (G-BN), which are quite
close to the measured values of ε�. A large ε� ¼ 12

(ε1=N ≃ ε) value found for G-Gr must effectively
account for efficient screening by the conducting graphite
substrate.
At this point, we apprehend the slopes of the lines

in Fig. 2. The apparent amplitude of the velocity shifts
δvexpt21 remains to be analyzed. The measured values are
δvexpt21 ≃ f0.084; 0.029g × 106 m=s for G-S and G-BN,
respectively, and we estimate that δvexpt21 ≤ 0.01 × 106

for G-Gr. On the other hand, Eq. (2) gives δv21 ¼
ðαc=4εÞðC2 − C1Þ ¼ f0.110; 0.022; 0.009g × 106 m=s for
ε ¼ 1, 5, and 12, respectively, for G-S, G-BN, and G-Gr.
The replacement ε → ε1=N in Eq. (2) results in an even
worse agreement with the experiment. Indeed, this replace-
ment is valid only for the leading logarithmic term, while
the sublogarithmic terms should be calculated explicitly,
and the simple combination Cn=ε will be replaced, gen-
erally speaking, by some more complicated one.
In order to describe the whole set of experimental data,

we assume the following ansatz:

vn ¼ v0 þ
αc
4ε�

�
L − ln

lB0

lB

�
þ αc
4εδv

Cn; ð4Þ

where ε� ¼ 3.9, 7, 12 at the leading logarithmic term is in
reasonable agreement with the 1=N expansion. In the
sublogarithmic term we fixed Cn to be the same as in
Eq. (2) and εδv to depend only on ε (but not on n). We do
not have a proper theoretical justification for this
assumption but in adopting it and setting εδv ¼ 1.3, 3.7,
12 in order to reproduce the experimentally observed δv21
we are left with only two adjustable parameters, v0 and L.
Their best matching values are v0 ¼ 0.88 × 106 m=s and
L ¼ 4.9, i.e., W ¼ ðℏv0=lB0

ÞeL ¼ 3.1 eV, in fair agree-
ment with the bare velocity and the characteristic band-
width expected in graphene [32].
Concluding, using micro-magneto-Raman scattering

spectroscopy, we have studied inter-Landau level excita-
tions in graphene structures, embedded in different dielec-
tric environments. Understanding the energies of inter-LL
excitations clearly falls beyond the single-particle approach
(which refers to a simple Dirac equation) but appears to be
sound when the effects of electron-electron interactions are
taken into account. We confirm that the electronic proper-
ties of graphene on insulating substrates (weak dielectric
screening) are strongly affected by electron-electron
interactions, whereas conducting substrates favor the sin-
gle-particle behavior (graphene on graphite studied here,
but likely also graphene on metals [33–35] and graphene on
SiC [36,37]).
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