PHYSICAL REVIEW B 98, 075106 (2018)
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We derive electronic tight-binding Hamiltonians for strained graphene, hexagonal boron nitride, and transition-
metal dichalcogenides based on Wannier transformation of ab initio density functional theory calculations. Our
microscopic models include strain effects to leading order that respect the hexagonal crystal symmetry and local
crystal configuration and are beyond the central force approximation which assumes only pairwise distance
dependence. Based on these models, we also derive and analyze the effective low-energy Hamiltonians. Our
ab initio approaches complement the symmetry group representation construction for such effective low-energy
Hamiltonians and provide the values of the coefficients for each symmetry-allowed term. These models are
relevant for the design of electronic device applications since they provide the framework for describing the
coupling of electrons to other degrees of freedom including phonons, spin, and the electromagnetic field. The
models can also serve as the basis for exploring the physics of many-body systems of interesting quantum phases.
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I. INTRODUCTION

Strain effects are important in the physics of van der Waals
two-dimensional materials [1,2], which feature covalent bond-
ing within each single layer and weaker attraction between
layers. Instead of being geometrically flat, these materials
exhibit ripples and corrugations, features that are ubiquitously
observed, for example, in free-standing graphene [3] and in
samples on a substrate [4]. After the discovery of graphene, the
list of two-dimensional materials has been constantly growing
and includes now several materials, such as hexagonal boron
nitride (hBN) [5], black phosphorus [6], and transition-metal
dichalcogenides (TMDCs) [7] with the chemical composi-
tion of M X, (M = transition metal atoms Mo, W; and X =
chalcogen atoms S, Se, Te). These layered materials exhibit
interesting behavior ranging from topological phases [8] to
superconductivity [9], magnetism [10], topological order, any-
onic excitations in fractional quantum Hall liquids [11], and
other strongly correlated phases that arise due to the reduced
dimensionality and screening [12]. The list of their possible
applications is also constantly expanding, including devices
for optoelectronics [7], plasmonics [ 13], and valleytronics [14],
which involve structures based on single-layer or heterostruc-
ture form [15]. These stable layers can sustain a substantial
amount of external strain as high as 25% in graphene [16].
Kirigami structures based on graphene [17] allow even higher
degrees of stretchability and resilience. Scanning tunneling
microscopy [18] or atomic force microscopy [19] tips can be
used to introduce indentation and strain in a controlled manner.
The strain-induced time-reversal symmetric pseudomagnetic
field in graphene has been shown to reach 300 T [20]. A
desirable functionality would be to use strain and deformation
to manipulate the flow of electrons or excitons in the design
of layered-material-based devices [21,22] and the associated
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nanostructures, such as nanoribbons [23]. To achieve this
goal, reliable quantitative understanding and modeling of the
strained-layered properties are crucial and call for a more
systematic treatment than what is presently available.
Conventional approaches for modeling can be classified
in two categories: The top-down method treats the deformed
layers as a manifold with curvature and local metric tensor
structure, analogous to a membrane in soft matter [24] and to
general relativity in curved space-time [25]. In this approach,
once the differential geometry tensors are constructed from
the deformed layers, they couple to the low-energy effective
field theories as symmetry-allowed gauge fields, potentials,
and connections [26-30]. The bottom-up approach relies on
computationally demanding first-principles calculations [31]
or on scaling of tight-binding matrix elements in the presence
of the lattice deformation [1,32,33]. The scaling of these cou-
pling terms is usually parametrized empirically as a function of
pairwise distances, which is known as the central force approx-
imation, in the form of Griineisen parameters [34]. In practice,
these empirical parameters are usually obtained from fitting
band-structure calculations of the deformed crystal, which is
relatively insensitive to the underlying orbital character and
composition of the coupling terms. Potential pitfalls in this
approach include overfitting of the band structure, distortions
in the wave-function character, and the breakdown of the
approximations invoked. Another issue arises from bridging
the top-down and bottom-up approaches as pointed out by
Yang [35]: The proper “metric” and the emergent geometry
in the low-energy model should stem from the deformation of
the underlying tight-binding Hamiltonian rather than being of
purely geometric origin. It is thus valuable to derive from an ab
initio perspective the tight-binding parameters of the strained-
layered crystals, especially for materials with multiple orbital

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.075106&domain=pdf&date_stamp=2018-08-06
https://doi.org/10.1103/PhysRevB.98.075106

FANG, CARR, CAZALILLA, AND KAXIRAS

PHYSICAL REVIEW B 98, 075106 (2018)

symmetries and complicated character. Previously, we have
demonstrated an efficient and reliable method for modeling
layered materials and their vertical stacking [36,37] including
intra- and interlayer coupling terms based on the Wannier
transformation of electronic band structures obtained from
density functional theory (DFT) calculations without having
to rely on empirical fitting parameters. Here we generalize the
Wannier method [38] to monolayers with in-plane strain and
derive the relevant models, compatible with the underlying
crystal symmetry. In increasing order of complexity with
the underlying orbital content, we construct such Wannier
tight-binding Hamiltonians (TBH) for graphene, hBN, and
four TMDCs. These models are valid in the presence of
a slowly varying in-plane strain field, providing the elec-
tronic coupling to long-wavelength in-plane acoustic phonon
modes [39,40]. We also derive the corresponding effective
low-energy theories coupled with the strain field, consistent
with the effective models derived from the principles of
symmetry group representations, which by itself can iden-
tify all symmetry-allowed terms [41,42] but is insufficient
to provide estimates for the values of the coupling con-
stants involved. Our ab initio Wannier tight-binding approach
thus complements the powerful symmetry group analysis,
gives accurate values of the parameters in the model, and
empowers calculations of large-scale structures of strained
materials [43,44] and finite-size systems with coupling to
external fields [45].

For the underpinning density functional theory calculations,
we adopted the exchange-correlation functional parametrized
by Perdew, Burke, and Ernzerhof (PBE) [46]. Conventional
DFT functionals tend to underestimate the band-gap values
derived from the experimental results. On the experimental
side, various factors from the dielectric screening of the
substrates [47] and doping [48] might further complicate
the comparisons to theoretical band structure. In terms of
the theoretical calculations, different choices of functionals,
such as HSEQ6 [49] or more advanced GW calculations for
quasiparticle energies [50] can be adopted to improve the
band-gap values. In previous work, we surveyed briefly the
comparison between theoretical calculations and experimental
measurements [31]. Here, we focus on the modeling of strain
correction terms of the two-dimensional crystals with hexag-
onal symmetry. Further improvements of the electronic band
structures from different choices of the functionals and more
advanced GW calculations are compatible with the Wannier
construction method [36], and the analysis presented here will
apply with modified parameters.

The paper is organized as follows: In Sec. II, we first elabo-
rate on the conventions of crystal structure and the assumptions
involved in strain-field modeling in our paper. We then apply
these methods to construct tight-binding Hamiltonians for the
in-plane strained crystals in graphene, hBN, and TMDCs. In
Sec. III, we derive the effective low-energy Hamiltonians,
based on the strained tight-binding Hamiltonians, and compare
with symmetry group analysis. We conclude in Sec. 1V,
which summarizes our paper and points out the potential
generalizations and applications of our models. We elaborate
on the numerical framework for DFT calculations and Wannier
constructions in Appendix A. In Appendix B, we give the
mathematical background of the symmetry group analysis and

provide guidance for generalizing to other scenarios relevant to
layered materials. The values of the tight-binding parameters
including the effect of strain for four TMDC:s are also tabulated
in Appendix B [51].

II. TIGHT-BINDING HAMILTONIAN
FOR STRAINED-LAYERED MATERIALS

We develop the tight-binding Hamiltonians for the strained
layered structures by following exactly the same procedure as
in our earlier work for ideal layers [36,37] (see Appendix A
for more detailed descriptions and Fig. 2 where the steps from
DFT to Wannier model construction for the WSe, monolayer
crystal are illustrated). From the macroscopic point of view, the
strain field is described within continuum elasticity theory. For
strained layers, it is equally important to specify the underlying
deformed microscopic configurations. Here, we provide the
connection between the macroscopic elastic theory and the
microscopic atomic details using the generalized Cauchy-
Born rule for the local optimum strain configuration of basis
atoms, which might show violations in the restricted elastic
relations. After establishing the deformed crystal structure, the
tight-binding Wannier Hamiltonians of the relevant selected
bands are constructed and truncated to retain only a few near
neighbors as appropriate for each layer type. These strain
scaling parameters are tabulated along specific bond directions
with simpler expressions, whereas other equivalent bonds are
related by symmetry transformations.

A. General formulation of strained lattices

Graphene, hBN, and the TMDC-layered materials inves-
tigated in our paper share the hexagonal lattice system and
the honeycomb crystal structure with periodic lattice vectors
a, =ax, a, = a(%‘ﬁ + */759) where a is the lattice constant.
Two basis sites are located on the projected layer plane §3 = 0
and 84 = (2a; + a;)/3. In hBN, the nitrogen atom occupies
the § 5 site. The TMDC layer consists of three atomic sublayers
in each single-layer unit as shown in Fig. 1(b) with chalcogen
atoms at projected sublattice sites § 4 and at height +d, above
and below the plane of the metal atoms. For the reciprocal
space representation, these crystals share the Brillouin zone
(BZ) shown in Fig. 1(c) with special k-points K4 = i‘;—’a’)%
where the valleys appear in the band structure.

The slowly varying in-plane strain field can be de-
scribed by the displacement deformation vector field u =
[uy(x,y),uy(x,y)]. The coordinates x and y denote the
undistorted crystal coordinate, which is mapped to the new
position [x + u,(x, y), y + uy(x, y)] in space. Since a con-
stant displacement field introduces no physical changes to the
layers, the strain field is characterized by the derivative of u,
defined in tensor form

iy = 5@ + 0ju;), (1)

with i, j = x, y. This second-rank tensor can be decomposed
into the trace scalar part u,, + u,, and the doublet (i, —
Uyy, —2uyy) which forms a two-dimensional irreducible rep-
resentation of the C3, symmetry group of the crystal. There
is also a rotational piece w,, = dcu, — dyu, where we take
wyy = 0 by choosing the proper set of coordinates. We can
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(b) TMDCs structure

FIG. 1. The conventions for the honeycomb hexagonal crystal
structure: (a) Top view of the crystal lattice with primitive vectors a;
with A (B) basis atoms shown as blue (red) solid circles. In hBN,
boron (nitrogen) atoms occupy sublattice A (B) sites, whereas in
TMDCs metal atoms (chalcogen pairs) sit at B (A) sites. The three
thick black arrows labeled by #; denote the hopping bonds used in
strained graphene and hBN up to third-nearest neighbors in Eq. (6).
For TMDCs, the hoppings from M sites are denoted by the thick
orange arrows instead for Egs. (10) and (11). (b) Perspective side view
of the trilayer structure in TMDC. (c) Brillouin zone in momentum
space.

further simplify the modeling by applying the local density
approximation to the strain effects, that is, by assuming
locally the tight-binding parameters are approximated by the
strained periodic crystal with constant u;;. In the following,
these strain model parameters are extracted from the Wannier
transformation of DFT calculations with periodic unit cells
for the uniformly strained crystals. A structure with nonuni-
form strain can be modeled by combining these local-strain

tight-binding parameters which have only long-wavelength
variations compared to the lattice constants.

The key steps in constructing these microscopic Hamilto-
nians are as follows:

() In linear elastic theory, the deformed microscopic dis-
placement vector v’ = (v}, v/, v,) between atomic sites is

’

Uy = Uy + U Ol + Uy 0y,
/

v, =0, + Uy Oxlhy + U, 0yUy, 2)
’

v, = v,

with v = (vy, v,, v;) as the unstrained vector. Although these
relations hold for the primitive lattice vectors, strictly speaking,
this approximation, the Cauchy-Born rule [52,53], is only valid
for a Bravais lattice with a single atom basis. For a strained
primitive unit cell with multiple basis atoms, the relative
position or orientation of these atoms varies in addition to the
relations prescribed by Eq. (2). For example, in layered materi-
als, such as phosphorene, TMDCs, and puckered graphenelike
materials, there is a height variation in the position of individual
atoms under strain. We adopt the approximation of Eq. (2)
in modeling graphene and hBN for simplicity. We include
the height corrections for the chalcogen atoms in TMDCs by
generalizing the above Cauchy-Born approximation.

(i) To incorporate the strain effects in the tight-binding
Hamiltonians, the tgﬂ hopping integral between «, 8 orbitals
on different sites is assumed to scale with the pair distance
|84, known as the central force approximation. Up to leading
order linear response, the strained hopping integral can be
approximated as [54]

1 [ dt
’ 0 L
wp = lus T 118ap - Bap - VU, 16ap] [dwaﬂJ ©)

Energy (eV)

FIG. 2. Wannier tight-binding Hamiltonian construction from DFT for the WSe, monolayer: (a) DFT band structure, blue circles (without
spin-orbit coupling) with the 11 p-d hybrid bands which are relevant for low-energy electronic properties, used to derive the Wannier tight-binding
Hamiltonian (red lines). (b) Wannier Hamiltonian results with truncation to limit the range of neighbor coupling terms. (c) Hamiltonian
augmented by the atomic spin-orbit-coupling terms (red lines), compared with the full DFT calculation with spin-orbit coupling included (blue

circles).

075106-3



FANG, CARR, CAZALILLA, AND KAXIRAS

PHYSICAL REVIEW B 98, 075106 (2018)

Some empirical models go beyond the linear order by propos-
ing a functional form which depends on the pair distance,
such as exponential functions [1,32] or algebraic functions
of |r| [55]. For the orbitals that are not s-like, the hopping
integrals within the two-center Slater-Koster approximation
[56] can be decomposed into various channels related to the
angular momentum projection, such as the o and m bonds
in p-p orbital coupling. The scaling can be applied to each
channel as a function of pair distance. In general, the scaling
of the hopping integral reflects the shapes of the orbitals and
the changes in the crystal-field potential. These translate into
more involved forms of scaling beyond merely the pair distance
dependence. For example, if the crystal is stretched along a
direction that is perpendicular to the bond, the central force
approximation would dictate no change for the hopping, which
is not accurate. Here, we derive the models up to linear order
in the strain and beyond the central force approximation. All
the terms that couple (uyxx +uyy), (Uxx — Uyy), and u,, are
retained in the Hamiltonian and their forms are constrained by
the underlying crystal symmetry. Thus, the hoppings along a
bond acquire corrections when the crystal is stretched along the
perpendicular direction to the bond, which captures the local
environment change. Many layered materials involve orbitals
beyond s-like ones and have a more complicated geometry for
atomic configurations and relative orientations.

(iii) Treatments of strain effects on tight-binding Hamilto-
nians typically involve only the scaling of hopping terms and
neglect the variations for on-site energy terms. The on-site
energy variations will be relevant for a layer with nonuniform
strain field, also called the deformation potential. We extract
the relevant potential information and work function from
DFT calculations and define the energy reference point to be
zero at the vacuum level outside the layer. In experiments,
the presence of a substrate or encapsulating layers, and the
charge redistribution in the layer with nonuniform strain results
in further modification of the electrostatic environment, the
screening for interactions, and hence of the on-site terms.
Solving the self-consistent potential profile is beyond the scope
of the current treatment.

(iv) To complete our discussion in the presence of the
macroscopic perpendicular (out-of-plane) displacements 4 for
the layer or the flexural phonon mode in the long wavelength,
we can define the generalized strain tensor [26],

il = 5 Qiu; + d;u; + 9:h 0;h). 4)

We expect ii;; to capture part of the contributions to
the strained tight-binding Hamiltonians. Due to (mirror)
symmetry-breaking and curvature effects, other terms with
derivatives of h that couple states of different sectors can
also appear, which can lead to interesting phenomena, such
as spin-lattice couplings in layered materials [34,57,58].
Capturing these contributions requires a Wannier transforma-
tion to extract parameters for a curved layer in a supercell
geometry, which we leave for future work.

B. Application to monolayer graphene and hBN

In graphene, the semimetallic gapless p, bands feature rel-
ativistic linear Dirac dispersion at low energy near the K points
of the BZ. Most of the electronic properties can be explained by

the simple two-band model involving only the p, orbitals. hBN
can be viewed as a closely related structure to graphene with a
gapped insulating band structure introduced by the Semenoff
mass terms [59] from the sublattice symmetry breaking. For
the monolayer modeling of strained graphene and hBN, the
distorted atomic positions at the A/B basis sites are assumed
to follow Eq. (2). In terms of electronic modeling, we retain
only p, orbitals up to third-nearest-neighbor coupling. This is
adequate to give a very good description of the key features
of the band structure especially at the band extrema [37]. To
model the strain effects for graphene and hBN, we first start
with the on-site potential-energy term, which is defined relative
to the DFT vacuum level outside the layer and can be written as

€ =€+ ooy, + Lt_\,y), (5)

to leading order in u;;. The linear coupling to the
two-dimensional  representation (U, — Uyy, —2Uyy) S
forbidden from the underlying crystal and p, orbital symmetry.
For the near-neighbor hopping terms, the strain-dependent
tight-binding parameters can be written as

I, = tg + o, (U + uyy) + Br [a);(ux/\f - ”_v,v) + Q’a);ux.v]’
(6)

where r is the bond vector, @" = (0}, »}) (|®| = 1) is the
associated unit vector, and «, and B, are the strain response
parameters. The ®" unit vector is parallel to the bonding
direction for the first- and third-neighbor hoppings but perpen-
dicular to the second-neighbor hopping direction [see Eq. (15)
for the first-neighbor example]. This form is constrained by the
irreducible representation of the underlying crystal symmetry.
The central force approximation would further constrain the
or and B, parameters. For example, the nearest-neighbor
terms under this approximation would have a; = —g;, which
clearly is not sufficient as our detailed modeling shows.

For graphene and hBN, the relevant parameters that enter
Eq. (6) are tabulated in Table I with the unit vector defined as
@y = cos(0)x + sin(0)¥y. In this table, only the independent
hopping terms along specific directions as shown in Fig. 1(a)

TABLE I. On-site Eq. (5) and nearest-neighbor hopping parame-
ters Eq. (6) for graphene and hBN. For hBN, the superscript indicates
the starting point of the hopping matrix element (otherwise from the
A site to the B site.). The vector § = (a; + 2a,)/3 and the units are
in eV. The last column specifies the corresponding @" unit vectors as
in Eq. (6).

Graphene
On site €§ = —3.613 of = —4.878
) ) =-2822 o =4.007 B = —3.087 Q)
a; 1) =0.254 a =—0.463 B, =0802  @.p
8 — a, — 2tl2 l:? = —0.180 o3 = 0.624 ,33 =0.479 C’(\),Tr/z
hBN
On site € =—1.287 of =-4778

ey =-5393 off =—-2.227
) 1) =-2.683 o« =3.142 B = —2.386 Q)
a B =0.048 B =0176 BE=1.061 &.p
a, N=0218 off =-0231 BN =0.721 &p
8§ — a, — 2(12 [:? = —0.228 o3 = 0.419 ﬂg =0.598 (’l\)_ﬂ/z
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are tabulated. The rest of the bonds at the equivalent positions
can be related by appropriate symmetry operations.

C. Application to transition-metal dichalcogenides

The monolayer TMDCs with H structures are
semiconductors with a direct band gap (typically 1 to
2 eV) with band structures that have similar features to those
of hBN (an insulator) with the band edges at the K valleys.
We start our formulation with the tight-binding Hamiltonian
in the monolayer TMDC crystal. The relevant states consist
of seven valence bands and four conduction bands, which are
hybrids of metal d orbitals and chalcogen p orbitals. In Fig. 2
we illustrate the DFT (blue circles) and Wannier construction
for a WSe, monolayer crystal with the tight-binding bands for
these (p-d)-orbital hybrids with red lines. The xy-layer mirror
symmetry can be utilized to classify these states into odd and
even sectors with the band edges being in the even sector. We
focus on the spinless models and group the odd/even orbitals
as Wa = (¢ =d, ¢y =dQ, —), V5 = (§ = p. ¢ =
P, ¢, = pl), We = (¢ =d), ¢y =d ., ¢, =d2),
and  Wp = (¢, = p, ¢y = p§,e), ¢.=p9) with the
xy-mirror plane still being a symmetry of the crystal when
in-plane strain is included and the (o/e) superscript denoting
the odd/even sector (the z component is omitted in the W,
group). The grouping and the ¢, ¢,, and ¢, labelings are
related to the x-, y-, and z-like orbitals under threefold rotation
symmetry of the crystal. For the Hamiltonians below, we will
classify coupling terms between different groups of orbitals
as

Hxx ny sz
(\D[|H|\Il}): H,, H,, H,|, (7)

X sz sz

where Hy,g = (¢é|H |¢’é). For the strained TMDC monolayer
crystal, the local optimum atomic configurations show that the
distance dy_x for the chalcogen pair varies as

%dX—X = dO - dl(uxx + uyy)s (8)

with the form constrained by the threefold rotation crystal
symmetry. The pair distance stretches when the crystal is
compressed, and the relevant parameters are tabulated in
Table II.

In the original tight-binding Hamiltonian of the TMDC
crystal [36], we included the on-site terms and up to third-
neighbor couplings. The first- and third-neighbor couplings
are of the M-X type, whereas the second neighbor is of M-M
or X-X type. We investigate the strain correction to these
Hamiltonian terms:

TABLE II. The lattice constants (for unstrained TMDCs) a (A)
and the distance between chalcogen atoms dx_x (A) in the strained
TMDCs, given by Eq. (8).

MOS2 MOSGZ WS2 WSez
a 3.182 3.317 3.182 3.316
dy 1.564 1.669 1.574 1.680
d, 0.517 0.572 0.560 0.611

(i) The on-site terms include not only the on-site energy,
but also hybridization between different orbitals at the same
site. The total on-site Hamiltonian has four terms Hi(io) (i =
A, B, C, D), and they share the same form. Within each sector,
this symmetric form is simplified with the threefold rotation
symmetry and the yz-mirror symmetry,

e 0 0 a0 0
A9=10 & O|+@a+uy)| 0 o 0
0 0 e 0 0 «f
0)
¢ 0 0
e —uy)| 0 =L pY
0 O
(0) )
0 0 1
[ B 00 ©)
0)
( 0 0
for all four TMDCs.

(ii) First- and third-neighbor couplings are hoppings from
M atoms to X atoms (at —(a; + 2a;)/3 and 2(a; + 2a;)/3,
respectively). There are two groups for the first-neighbor
coupling H l(;lz , H L()lg and one group for the third-neighbor term
H L()Sé (H 1(33/3 is neglected). They all have the following scaling
form with strain:

0 0 a0 0

AY = 0 | 4| 0 o o
0 A o 0 o o
(n)
™m0 0
+ (Uxy — uyy) 0 ;n) én)
(n) (n)
0 3 4
(n) (n)
0 5 6
(n)
F|B” 0 0 | (10)
(n)
N 0 0

where n = 1, 3 for the first- and the third-neighbor couplings.

(iii) The second-neighbor hoppings are between M-M and
X-X pairs (at the a; position), and there are four kinds of terms
Hi(iz) (i=A,B,C, D). They all share the same following
form:

@ @, 2 2 (2

7 (2) ‘o ?) 2 (2 050(2) a%2) a(z)
HY = | =7 117 ts + (ax tuyy) | —az” o) os
2 ,2) ,2) 2) (2) (2)
-7 157 —oy” as” ay

2) 2) ’3(2)
0(2) %2) %2)
H(uxy —uyy) | —ps 1 5

(2) 2) 2)
=B 5 2
0 é2) (2)

7
+2y | BP0 |- (11)
@ _g@
7 8
For convenience, the values of the parameters that enter in
the expressions for on-site (superscript 0), first-, third-neighbor
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FIG. 3. Comparison of the (a) DFT and (b) TBH electronic band structure without spin-orbit coupling for a monolayer WSe, crystal with
isotropic strain. The black dashed lines are the bands from the pristine crystal, whereas the red (blue) solid ones are from the crystal with
—2% (42%) isotropic strain. The high-energy bands in the DFT calculations are those beyond the p-d hybrids included in the TBH basis. The
vacuum level is at zero energy. (c) and (d), similar comparison with spin-orbit coupling.

(superscripts 1 and 3), and second-neighbor (superscript 2)
hoppings are collected in a sequence of tables in Appendix B.
Thus far, we considered only the hopping along one specific
direction, which gives the simplest expressions for the hopping
matrix elements. The equivalent terms are related to this by
the threefold rotation symmetry or Hermitian conjugation.
There are no new independent parameters associated with these
terms in the equivalent directions. The form of these hopping
directions in the presence of the strain field involves a simple
transformation. For example, for the bond 8’ which is rotated

counterclockwise by 2 /3 from the bond §, the hopping is
Hs (Uyy, thyy, 2uyy) = U%H(g(u/ !

xoo Uyy

Zu;y)aR,
ey = e /4 + 3y, /4 — V3 /2,
Wy, = 3ut /4 + 1y /4 + N3y /2,
2l = VB /2 = 3y /2 — Uy, (12)

For graphene and hBN, Uz = 1. For TMDCs, H; and Hy are
the 3 x 3 matrices as parametrized for the Hamiltonians above,
and

A —1/2 32 0
Ur = | =32 =172 0], (13)
0 0 1

with Z/A{fz = 1. This threefold rotation operation together with
the Hermitian conjugate, which reverse the bond direction
complete the parametrization of all equivalent bonds in the
tight-binding Hamiltonian.

For the unstrained TMDC crystal with only ¢; and t](")
terms for each interaction, the present model corresponds
exactly to the one in our previous work [36]. The crucial
spin splitting of the bands can be generalized by doubling the

orbitals by the spin degrees of freedom and incorporating the
spin-orbit coupling as the atomic on-site AL - S terms [36].
The symmetry-allowed spin-dependent hopping terms beyond
these on-site atomic contributions are neglected in this paper
but can be extracted and further modeled based on the Wannier
procedure. In Fig. 3, we compare the full DFT calculations as
shown in (a) to the simplified TBH in (b) for the pristine WSe,
crystal and the ones with +2% isotropic strain applied. In (c)
and (d) we compare the DFT results with spin-orbit coupling
to the TBH augmented with atomic AL - S on-site terms. We
find good agreement between the full DFT calculations and our
TBH results. We also note that the couplings to isotropic strain
(txx + uyy) have the same form as the unstrained couplings,
whereas the terms with (4., — u,,) and u,, break this form
in a pattern that respects the crystal symmetry by forming
appropriate symmetry invariants. The previous modeling of
the graphene and hBN cases is similar to the H,, terms here;
details on the symmetry constraint derivations can be found in
Appendix B.

As a final comment, we discuss some of the important
features of the band structure described by our tight-binding
Hamiltonian in the presence of strain. The band gap at the K
valley scales linearly with the isotropic biaxial strain as shown
in Fig. 4 for MoS,. The slope agrees well between the tight-
binding Hamiltonian (red line) which gives —103 meV /% and
the full DFT calculation (blue line) with —110 meV/%. The
relative offset of the two can be corrected by adding more terms
of longer range to the truncated Hamiltonian. The slope is
also in good agreement with photoluminescence experiments,
measured at —105 meV /% with substrate thermal expansion
[60] and —99 meV /% with suspended monolayer MoS, [61].
To compare all four TMDCs, recent optical experiments show
that MoSe, < MoS; < WSe; < WS, for the band-gap shifts
under biaxial strain [62] and the sequence is consistent with our
DFT and tight-binding results. The slopes for four TMDCs can
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(a) (b)

2 Without SOC 2 With SOC
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E1_8 TBH 1.8 TBH
©
617 1.7
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516 DFT 161 DFT
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w15 1.5

1.4 1.4
-2 0 2 -2 0 2

Strain (%) Strain (%)

FIG. 4. The energy gap between the highest valence band and
the lowest conduction band at the K valley for a MoS, monolayer
crystal under isotropic strain (a) without and (b) with spin-orbit
coupling corrections included. The blue (red) lines are from DFT
(TBH) calculations. The slopes agree well for the strain effects.

be inferred from the f; parameters in Table IV for the effective
Hamiltonians.

III. EFFECTIVE HAMILTONIANS

In this section, we derive the effective Hamiltonian to
illustrate the strain effects on the electronic band structure
and the symmetry properties at specific k points relevant to
the low-energy degrees of freedom. In the literature, many
effective Hamiltonians have been proposed with various levels
of accuracy, including the coupling terms to external fields,
such as strain and electromagnetic fields. One way to arrive
at these effective Hamiltonians is through the construction of
invariants under the irreducible symmetry group representation
[41,42,42] from objects, such as the momentum k, strain tensor
u;j, and other fields present. Although symmetry group analy-
sis alone cannot determine the numerical coupling parameters,
it is useful to identify all the symmetry-allowed terms in the
effective theory. An alternative way of deriving the effective
Hamiltonians is based on the expansion of the tight-binding
Hamiltonians for the material [33]. The additional irrelevant
high-energy bands at the expansion k point can be integrated
out [63], and various effective terms can be generated in the
reduced space of the low-energy bands. The order of expansion
can be controlled, and the numerical coupling constants can be
derived from the tight-binding Hamiltonian parameters. In the
following, we rederive the lowest-order effective Hamiltonians
and show that they are consistent with the ones in the literature,
which is a cross-check of the symmetry properties of our
tight-binding Hamiltonians. Higher-order effective terms can
be generated by further expanding the model [33].

A. Monolayer graphene

For the single-layer graphene, the electronic band structure
exhibits linear gapless Dirac cones at two inequivalent K4
points. Around the K, point, we define the wave function
as W = (Wl 1) Y&, 1) for the components on the A/B
sublattice at momentum (K, + k) and 6 the Pauli matrices on
sublattice indices. The three nearest B sites from the central A

TABLE III. Effective low-energy Hamiltonians at the K valley
including strain terms for graphene. 6., &, are Pauli matrices with
length [ = a/+/3 where a is the graphene lattice constant. The
numerical values are from the upper part of Table I for graphene
with units of energy.

Hy kol + 6ykyl =210+ 31)

Hj 1 eg — 315’

H, (txx + Uyy)1 Olg — 3,

H, (xx — tyy)By — 26y 21— B3)

H; [Qx — gy kel — 2uyky 111 362

H, (xx + 1y, )Gk + Gyky) =30 + & =203 + 3)
Hs u;i6ik;lii, j=x,y %ﬁl +38;

site are located at

s — i(() D s 4 __ﬁ -t
1 \/3 ’ ’ 2 ﬁ 2 ’ 2 ’

m_ a (V31
33 _ﬁ<2’2>’ (14)

with a as the lattice constant. Under uniform strain, the changes
in the hopping strength from A to B sites are

Sll(l) = o1 (uxx + uyy) + Br(uxx —

514D

Uyy),
= o1 (Uxx +Uyy) = Br(uxe — Uyy)/2 — \/5'31"’)‘)” (3)
5;;1) = a1 (Uax +ttyy) = Br(uxx —uyy)/2 + ﬁﬂlu"«v’

using the transformation rule of Eq. (12). The same procedure
applies to the second and third neighbors. Together with the on-
site terms, we arrive at the k - p Hamiltonian after expanding
the tight-binding Hamiltonian Hyg (k) at K,

5
Hg, = vpHo(k) + ayHy + » aiHy(k),  (16)

i=1

with k = (k, k) as the momentum measured from K, and
the definition for each term and the coefficients are given in
Table III. Hy gives the usual Dirac Hamiltonian with linear
dispersion with Hj + H; as the shift in Dirac energy from
the on-site and second-nearest-neighbor contributions. The H;
terms with i > O are the strain-induced contributions [42]. H,
is the pseudogauge field term which shifts the Dirac point. In
the nonuniformly strained crystal, this term will depend on
the spatial position and is responsible for generating pseudo-
Landau levels. A term Hg = [0, (ttxx — Uyy) + 205Uy ]6; im-
plies a gap opening in the presence of a nonuniform strain field
[42] which can be estimated from the changes in on-site terms
in the uniform strain field.

TABLEIV. TMDC k - p theory parameters at K with the units in eV.

TBH fo fi f f fa fs

MoS, —5.07 1.79 1.06 —5.47 —-2.59 2.20
MoSe, —4.59 1.55 0.88 —-5.01 —2.28 1.84
WS, —4.66 1.95 1.22 —-5.82 —-3.59 2.27
WSe, —4.23 1.65 1.02 —5.26 —3.02 2.03
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B. Transition-metal dichalcogenides

The spinless TMDC tight-binding Hamiltonian consists
of 11 bands. We project the full model to the reduced
two-band model at the K, point, consisting of the highest
valence-band ®° (of d,>_,» + id,, character) and the lowest
conduction-band ®¢ (of d,> character), and we investigate the
effects of uniform u;; strain field. The spin-orbit coupling
can be incorporated with additional spin-dependent terms.
The full Hamiltonian is Htg(k) = H{)B(k) + Hgain. To de-
rive the leading-order effective two-band Hamiltonian, we
expand the unstrained H%B (k) to linear order in k and take
the strain part Hgyin to be proportional to the strain-field u;;
without additional k dependence. The reduced band effec-
tive Hamiltonian can be determined by the matrix elements
Hfg.f = (®!|Hg(k)|®’) (i, j) = (c, v), labeling the valence
(v) and conduction (c) bands. We choose the convention <I>k+ =
(P, 14 Pk, +x)) With 6 acting upon those two-band indices.
For the unstrained TMDC, the effective k - p Hamiltonian takes
the form of a massive Dirac fermion [54],

H%g = fol + %61 + fra(k6x +ky6y), a7

with a as the lattice constant (see Table II), f; as the midgap
position relative to the vacuum level, f; as the mass gap term,
and f; as the velocity in the Dirac equation. The spin splitting
can be captured by adding (1 & &;)5, terms with § as the
Pauli matrices on the spin indices of the enlarged spin-band
Hilbert space. For the lowest-order correction terms in the
presence of deformations [54], the additional strain terms in
the Hamiltonian are

Hgrain = f3 Zuii + fa Zuii6z
+ fS[(uxx - uyy)ax - 2MX)r6y]a (18)

with f3 (f4) modifying the midgap position (massive gap) and
f5 as the pseudogauge field term. Each term contributes a
symmetry invariant term by the appropriate product of various
objects [54]. The values of the parameters for all four TMDCs
are given in Table IV based on the expansion of the tight-
binding Hamiltonian. For the higher-order corrections in k and
the strain-field u;; in this reduced band Hamiltonian, there are
two kinds of terms that contribute: the ones from the direct
expansion of the full Hamiltonian within the subspace, and the
virtual coupling process to higher levels via Schrieffer-Wolff
transformation [33,63].

When out-of-plane deformation and curvature are present
in the layer, the mirror symmetry is broken, and the odd/even
states can mix. With the spin-orbit couplings taken into
account, various types of coupling terms will be generated
which relate spin, band, strain field, and curvature [57,58] and
have been shown to introduce a spin-lattice coupling as an
in-plane effective magnetic field in the TMDC lattice [34].

IV. CONCLUSION

We constructed ab initio tight-binding models for the
strained-layered materials using Wannier transformation of

DFT calculations which bridges the microscopic tight-binding
Hamiltonians and the effective Hamiltonians based on sym-
metry principles using graphene, hBN, and TMDCs as pro-
totypical examples. This method is free from any empirical
fitting procedures and captures the microscopic details of the
electronic coupling to the strain field, or equivalently the
long-wavelength in-plane acoustic phonons. These models
apply to systems with multiple orbitals of distinct symmetries,
going beyond the single scaling Griineisen parameter approach
and the central force approximation. Although the linear-
response regime is assumed throughout the present treatment,
anharmonic couplings at larger strain can be included in a
similar way. The method can also be generalized to extract the
electronic coupling to long-wavelength optical phonon modes
and the interlayer coupling in the vertically compressed layer
stacks.

These microscopic strain models are relevant for a wide
range of applications, including: straintronics [43], that is,
engineering the strain field to obtain the desired electronic
properties, such as band gaps and effective masses; the re-
alization of stretchable electronic devices based on the layered
materials [64]; exploiting the interplay among moiré patterns,
commensurate-incommensurate transitions [65], and distor-
tions [66] which result from a twisted bilayer structure that
already strongly modifies the monolayer Dirac dispersion and
induces insulating states from the superlattice [67]; exploring
the effects of topological lattice defects [1,68]; induced inter-
ference effects from lattice deformation [69]; understanding of
electronic scattering and mobility from lattice deformations.
The pseudomagnetic field, that does not break time-reversal
symmetry, induced by the strain field may be utilized to probe
many-body physics through the quantum oscillations without
magnetic fields [70] or the fractional Josephson effect when
coupled with a superconductor [71]. Beyond the applications
involving static strain fields, we also expect that our micro-
scopic analysis is applicable to the dynamical strain field
generated by oscillating acoustic waves [72], which can be used
as an experimental probe of other excitations in materials or as a
means to realize periodically modulated Floquet Hamiltonians,
which will be relevant for studies of nonequilibrium or topo-
logical phases [73]. This extracted electron-phonon coupling
is also relevant to understand the Raman spectroscopy [39,40]
and other phonon-mediated phenomena.
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TABLE V. On-site (Hﬂ) and second-neighbor hopping (Hffj) strain terms in units of eV for MoS,, MoSe,, WS,, and WSe,.

H" MoS, MoSe, WS, WSe,
€ —4.873 —4.547 —4.327 —4.069
al” —2.498 ~2.341 ~2.631 —2.357
0 —0.890 —0.810 —0.986 —0.902
1 —0.206 —0.146 —0.198 —0.137
1 0.031 0.017 0.027 0.013
) —0.257 —0.191 -0.310 -0.232
ay? —0.258 —0.309 —0.453 —0.490
al? —0.202 —0.125 -0.213 —0.117
al? 0.705 0.514 0.834 0.589
B —0.676 —0.588 —0.942 —0.809
@ —0.192 —0.118 —0.175 —0.090
By 0.555 0.416 0.649 0.480
= —0.095 —0.063 —0.076 —0.037

APPENDIX A: NUMERICAL METHODS FOR DFT
AND WANNIER CONSTRUCTION

The DFT calculations in this paper were carried out using
the Vienna ab initio simulation package [74,75] with a projec-
tor augmented-wave type of pseudopotentials, parametrized by
PBE functionals [46]. A slab geometry with a 20-A vacuum
region is used to reduce the interactions between periodic
images. The DFT calculations for TMDCs are converged with
a plane-wave energy cutoff of 450 eV and a reciprocal space
grid sampling of size 29 x 29 x 1.

The extended Bloch wave-function basis can be trans-
formed into the maximally localized Wannier functions ba-
sis as implemented in the WANNIER9O code [38]. With this
transformation, the effective tight-binding Hamiltonian for a
designated group of bands of the material can be constructed.
This not only gives an efficient numerical method to reproduce
DFT results, but also provides a physically transparent picture
of localized atomic orbitals and their hybridizations. From
the calculations with and without spin-orbit coupling, we find
that a simple atomic on-site L - S term captures well the full
DFT band structure with spin-orbit coupling included. Our
paper is based on the systematic analysis of such tight-binding
Hamiltonians with strain applied in the DFT calculations,
which inherit the ab initio information without fitting proce-
dures for the numerical parameters. Further corrections for
band gaps from advanced GW calculations or other choices

of exchange-correlation functionals are also compatible with
Wannier constructions.

APPENDIX B: SYMMETRY AND IRREDUCIBLE
REPRESENTATIONS

The models presented in this paper can be thought of as
a set of linear equations which describe how an operator O,
such as the tight-binding energy between two orbitals or the
total mechanical energy, changes under some real-space field
X, such as the strain u;;. But even a simple linear model for the
next-nearest-neighbor hoppings between chalcogen atoms in
the TMDCs would be complicated. Such a model is based on
how three strain fields affect the hoppings among nine pairs
of orbitals (p; to p;) in three bonding directions, needing
a total of 81 (3 x 9 x 3) fitting parameters. The number of
independent parameters is smaller as the symmetry operations
of the crystal relate the values of some parameters to one
another or require others to be zero. Therefore, when modeling
these two-dimensional materials it is vital to understand how
the crystal symmetry constrains linear models in order to
validate computational results. For example, if one DFT fitted
parameter happens to be orders of magnitude smaller than the
rest of the parameters, it may be unclear if it should be taken as
exactly zero. Performing an analysis of the crystal symmetry
can clarify this problem as well as provide some insight into

TABLE VI. On-site strain terms (Héog, Héoc), and Hg)[),) in units of eV for MoS,, MoSe,, WS,, and WSe,.

MOSZ MOSGQ WSz WSez
Hgy ~ Hee  Hyy  Hgy  Hee o Hpy o Hgy o HE Hpy o Hyyo HEE Hpy
€0 —-6.720 —6.082 —8.839 5986 5559 8231 —6.838° —-5.734 —-9.078 —6.066 —5.267 —8.466
€1 —-7.235 -5856 —-7.850 —6.502 -5314 —-7.110 —-7.250 —5.498 —8.033 —6.494 —5.001 —7.277
oz(()o) 1.623  —1.021  —0.858 1.396  —1.090 —0.742 1.743 —1.212 0.158 1.385 —1.012 —0.050
afo) -1500 —-1.817 -3317 —1440 —-2.023 -—-3.316 —1.854 —1916 —4290 —1.724 —-1967 —4.138
/3(()0) -0.094 -0370 —-1.142 —-0.121 —-0.296 —1.146 0.089 —-0.292 —1.390 0.059  —0.220 —1.337
© 0273  —0.043 0.720 0.270 0.004 0.829 0.487 0.036 1.586 0482  —0.022 1.507
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TABLE VIL. First- (H}), Hy)») and third- (H ) neighbor hopping strain terms in units of eV for MoS,,

MoSe,;, WS,, and WSe,.

MoS, MoSe, WS, WSe,
Hy, Hpl Hpe Hy, Hpl Hpe Hy, Hpe Hpe Hy, Hpl Hpe
0 —0.789 1.411 0.014  —0.695 1.268 0.017 —0.884 1.558 0.010 —0.773 1.399 0.017
1 2.158 0.652 —0.245 1.941 0.554 —0.215 2.302 0.664 —0.273 2.079 0567 —0.242
B —0.940 —0.150 —0.874  —0.155 —0.993 —0.154 —0.905 —0.161
4V —1379 —0954 —0221 —1326 —0.858 —0223 —1436 —0943 —0265 —1.401 —0.853 —0.263
7 —0.883  —0.069 —0.772 —0.069 —1.005 —0.066 —0.896  —0.068
al” 0.545  —0.486 0.173 0.408  —0.407 0.175 0.585 —0.609 0.537 0406  —0.493 0.468
oV —0.605 0.843 0.204 —0.417 0.825 0.185  —0.482 1.045 0.185 —0.322 0.917 0.202
o 2.178 0.567 1.928 0.554 2.827 0.623 2.409 0.653
o 1.845 0.446 0.744 1.718 0.272 0.760 1.826 0.071 1.055 1.764 0.022 1.050
al —0.208 0.035 —0.298 0.062 —0.241  —0.090 —0.238  —0.021
o —1.076 1724 —0.178  —0.897 1530 —0.164 —1.128 2402 —0.345 —0.929 1973 —0.321
B 0401 —0353 —1.069 0264 —0367 —0.995 0.140  —0900 —1.110 —0.029 —0877 —1.094
o —2204 —0.070 —1.995  —0.093 —2293  —0.125 —2.153 —0.114
™ 2100 —0.682 —0267 —1874 —0510 —0292 —1990 —0306 —0.120 —1.879 —0276 —0.241
) —0.850  —0.281 —0.727  —0.290 —1.184  —0.536 —0.897 —0476
™ 0.859 0.899  —0.690 0.770 0.761  —0.664 0.915 0902 —1.093 0.798 0.761 —1.022
() —0.542  —0.382 —0475  —0.391 —0.193  —0.644 —0300 —0.651
™ 0377  —2.093 —0340 —0469 —1.841 —0299 —0.634 —2934 —0.535 —0.690 —2.447 —0.423
™ —0.836 1.101 0015 —0.717 1.005 0.007 —0.944 1427  —0.127 —0.793 1.082  —0.058

how many calculations would be necessary to create a complete
model.

One method of understanding the crystal symmetry con-
straints is through the representation theory of finite groups.
By knowing what patterns of matrices are compatible with the
point group of a given crystal, one can enumerate all possible
constrained terms which may arise in the modeling process
[42]. Another more practical description of this process is as
follows: Modify the operator O (X) under conjugate symmetry
operations of the crystal, denoted as S; for each S, one can then
generate a set of linear equations by requiring that the physical
model remains unchanged under the symmetry, namely,

STNOSXS8 S = 0(X). (B1)

Each S does not necessarily generate a unique set of equa-
tions, but applying all S’s yields the same constraints as ex-
pected from representation theory. An example of this second
approach is how lattice strain affects a tensor-valued operator,
such as the electric-field gradient [76]. However, for the tight-
binding energies, the approach is not so obvious. Whereas
scalar- or tensor-valued quantities can be directly written as
finite-dimensional representations of the point group of the
crystal, the Wannier localization process can only be consid-
ered a representation if the Wannier orbitals themselves obey
the crystal symmetries. The localized orbitals must translate,
rotate, or reflect into a linear combination of themselves
under each crystal symmetry. In practice this does not occur
as the Wannier orbitals are only defined to minimize the
spread in the electron density, sometimes breaking crystal

symmetry in the process. In our modeling, the Wannier orbitals
have small asymmetries, although there are approaches to
ensure crystal symmetry exists in the final Wannier orbitals
[77]. Assuming they are symmetric allows us to correctly
constrain the model, eliminating the numerically introduced
asymmetry.

First, we consider the nearest-neighbor and third-nearest-
neighbor hoppings, that is, the ones between TMDC atoms
of the same species. Our model includes the C3 rotation
symmetry by construction in Eq. (12), which is simply an
implementation of Eq. (B1) with S taken to be rotation by
27 /3. Then we need to consider only the symmetry relating
to the chosen bonding direction #;, which is reflection through
the y-z plane. The Hamiltonian must be invariant under this
symmetry, but the operation affects both the orbitals of the
Hamiltonian and the strain-field components. Thus, the xy and
xz components of the Hamiltonian are constrained to couple
only with uy, (both odd under mirror symmetry), whereas
every other component couples only with u,, and u,, (both
even under mirror symmetry). For the second-nearest neighbor,
a similar argument applies. In this case the mirror plane lies
halfway between the orbitals, so now we must compare terms in
the Hamiltonian to their transpose (Hi(/z) and H ;iz)). The same
rules can be used to check that the second-nearest-neighbor
tight-binding terms are consistent with the mirror symmetry
constraint.

Finally, the on-site terms are constrained by the C3 rotation
symmetry explicitly. The u,, + u,, correction is diagonal
as it is a one-dimensional representation, and the (u,, —
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TABLE VIII. Second-neighbor hopping (H ézg, Hézc), and H 1()2[),) strain terms in units of eV for MoS,, MoSe,, WS,, and WSe,.

MoS, MoSe, WS, WSe,
Hyp HE  Hpy  Hpy HE.  Hpy  Hyy HE.  Hpy  Hyy HEL Hp)
1 0.865 0.275 0.912 0.964 0.251 0.991 0.873 0.355 0.965 0.977 0.320 1.047
1P —0.187  —0.558 0.006 —0.172 —0.473 —0.004 —0218 —0.691 0.014 —0.198 —0.584 0.003
P —0174  —0298 —0.192 —0211 —0264 —0217 —0.175 —0371 —0212 —0217 —0333 —0.241
1 —0070 —0249 —0.038 —0.068 —0.201 —0.039 —0.099 —0304 —0.101 —0.092 —0245 —0.102
1 0.100 0.114  —0.106 0.076 0.096 —0.121 0.110 0.145 —0.163 0.079 0.124  —0.185
1 —0.068 0.410 0.008 —0.074 0.352 0.005  —0.082 0488 —0.031 —0.091 0423 —0.038
o —1.841  —1.027 —1425 —1979 —0951 —1586 —1.844 —1232 —1.122 —1986 —1.127 —1357
P —0.027 1.544 —0.057 —0.103 1333  —0.072 —0.067 1947 —0.162 —0.152 1.617 —0.159
o 0.444 1.032 0.644 0.536 0.885 0.668 0.434 1.123 0.674 0.557 1.013 0.718
o —0.045 0206 —0.170  —0.059 0.195 —0.162 —0.042 0462 —0314 —0.074 0325 —0.303
a?  —0210 0285 —0.199 —0.123 0236 —0202 —0.208 0365 —0.333 —0.105 0291 —0.287
al? 0.141  —0.738 0.065 0.142  —0.596 0.050 0.177 —0.654 0.105 0.188  —0.564 0.112
& 2203 —0910 —2.013 —2378 —0.793 —2.180 —2254 —1.068 —1.920 —2427 —0.966 —2.086
@ 0.768 1.337 0.828 0.827 1.108 0.884 0.772 1.240 1.039 0.834 1.179 1.069
) 0.350 0.376 0.540 0.445 0.333 0.576 0.283 0.522 0.580 0.401 0.406 0.556
P 0065 —0.003 0.143  —0.016 0.008 0.155 —0.054 —0.083 0.345 0.015 —0.044 0.331
2 —0.208 0.188 —0.056 —0.146 0.126 —0.026 —0.198 0.179 0.062 —0.104 0.129 0.063
2 0.096 —0.779 0.082 0.112  —0.667 0.073 0.127 —0.863 0.130 0.152 —0.727 0.112
) 0.482  —0.634 0.744 0.567 —0.565 0.777 0.467  —0.960 0.858 0.550 —0.776 0.873
0146 0.288 0.051 —0.128 0.255 0.066 —0.128 0.484 0.146  —0.157 0.308 0.109
P —0089  —0.152  —0.099 —0.092 —0.110 —0.127 —0.117 —0.046 —0236 —0.129 —0.099 —0.224

uyy, —2uy,) corrections have their x and y components rotate

into one another as a valid two-dimensional representation.
From these considerations we have constructed the form

of the tight-binding Hamiltonians given in Egs. (9)—(11). The

following tables (Tables V-VIII) contain the values of
the parameters that enter in the expressions of the model
Hamiltonians for the four common TMDCs, namely,
MoS,, MoSe,, WS,, and WSe,.
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