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Electron bands in Bernal-stacked (nontwisted) graphene bilayers in a transverse electric field
feature field-tunable bandgaps and band dispersion that flattens out as the field increases. The e↵ects
of electron interactions are sharply enhanced in this regime, leading to a cascade of correlated phases
exhibiting isospin (spin-valley) and momentum polarization orders. The momentum polarization,
driven by exchange interactions, originates from a “flocking” e↵ect, wherein all carriers condense
into one, two or three pockets produced by the trigonal warping of the electron bands. The isospin-
polarized phases mimic many aspects of the phases found in moiré graphene. The momentum-
polarized phases, to the contrary, have symmetry lower than that of the isospin-polarized phases
in moiré bands. We identify e↵ects that can serve as probes of these orders, such as electronic
nematicity, a B = 0 anomalous Hall response and orbital magnetization.

Narrow bands in moiré graphene[1–4] host a vari-
ety of strongly correlated phases with exotic proper-
ties that can be accessed by tuning external fields and
carrier density[5–26]. These findings inspired investiga-
tions into the existence of other narrow-band systems
with interesting properties. Recently, two nontwisted
graphene multilayers—Bernal-stacked bilayers and ABC
trilayers—have been identified[27, 28] as systems show-
ing cascades of ordered phases resembling those seen
in moiré graphene[37–41]. These systems feature elec-
tron bands with field-tunable bandgaps and dispersion
that flattens out quickly as the field increases. Carri-
ers in these bands become nearly dispersionless at large
fields, forming strongly interacting systems with inter-
esting properties[29–36]. These developments prompted
questions about new symmetry breaking types and new
orders achievable in these systems.

Here, starting from a simple framework for the inter-
action e↵ects, we predict new order types with properties
considerably richer than those of isospin-ordered phases.
We focus on the Bernal-stacked bilayer graphene (BG) in
a transverse electric field, arguably the simplest system
with field-tunable bands. Field-biased BG features bands
with field-induced bandgaps and dispersion that flattens
out quickly as the field increases. Expectedly, strong
interactions of carriers in flattened bands drive isospin
(spin-valley) polarization instability and a cascade of
phase transitions between states with di↵erent polariza-
tions, resembling those known in moiré graphene[37–41].
A phase diagram for this cascade is shown in Fig.1 a).

Strikingly, a sharp change in behavior occurs at lower
densities and stronger fields, where interactions lead
to an isospin-polarized Fermi sea break-up and sponta-
neous momentum polarization, as illustrated in Fig.1 b).
The momentum polarization originates from exchange-
induced “flocking” e↵ect, wherein all carriers condense
into one, two or three pockets at the band minima pro-
duced by the trigonal warping interactions. Momentum-
polarized phases emerge out of isospin-polarized phases
that act as their mother states. We describe symmetry
breaking transitions leading to these orders, and their
unique signatures such as electronic nematicity and in-

FIG. 1. a) Phase diagram for di↵erent isospin (valley and
spin) orders in a lightly-doped field-biased BG band. Car-
riers form Fermi seas with the degree of isospin polarization
increasing with field bias. States with di↵erent numbers of
isospin species, pictured in the insets, are found in the four
regions of the phase diagram obtained using realistic param-
eters. Polarization degree varies from one layer (fully polar-
ized) to four layers (unpolarized) [see text beneath Eq.(7)].
b) Level-two symmetry breaking occurring in a dashed box
marked in a). Di↵erent orders arise due to the Fermi sea
spontaneously breaking into N = 1, 2 or 3 pockets and shift-
ing to di↵erent band minima [see text after Eq.(15)].

commensurate Kekulé-type density waves. Furthermore,
a redistribution of Berry curvature throughout the con-
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duction band resulting from its trigonal warping en-
dows the momentum-polarized states with an enhanced
anomalous Hall response (see Fig.2). An abrupt onset of
a B = 0 Hall e↵ect, along with anisotropy of transport
due to electronic nematicity, will provide clear signatures
of momentum-polarized ordered states.

Electron bands of field-biased BG can be modeled
with a parabolic Dirac problem accounting for low-energy
states near K and K 0 points[42–44]:

H0 =
X

p

 †
ph0(p) p, (1)

h0(p) = �p21 � p22
2m

1⌧�1 �
2p1p2
2m

⌧3�2 +D1⌧�3,

where  p = ( AKp, BKp, AK0p, BK0p)T, ⌧1,2,3 and
�1,2,3 are the Pauli matrices acting on the valley and
sublattice (layer) degrees of freedom, respectively. For
conciseness, we have suppressed the spin indices for now,
as the spin-orbit coupling is negligible. The quantity D
is the interlayer bias generated by the transverse elec-
tric field. Subleading terms[44], such as trigonal warp-
ing, are ignored for now as we focus on understanding
the emergence of the ordered phases in SU(4)-symmetric
model. These terms govern subtle e↵ects such as isospin
anisotropy and momentum polarization, see below.

Here, we will be interested in the regime where the
field-induced bandgap 2D is large compared to the carrier
kinetic energy (see inset in Fig. 1 a)). In this regime
the upper and lower bands, flattened and separated by
the energy 2D � µ, e↵ectively decouple. We therefore
project the problem onto the conduction band [47]

E(p) =

s

D2 +

✓
p2

2m

◆2

(2)

and take the electron-electron interaction to be an
isospin-independent density-density coupling of carriers
in this band,

H̃int =
1

2

X

pp0q

Vq ̃
†
i,p ̃

†
j,p0  ̃j,p0�q ̃i,p+q. (3)

Here  ̃i,p are field operators of conduction electrons, with
i and j the isospin components K ", K #, K 0 ", K 0 #.
This Hamiltonian has a clear isospin SU(4) symmetry.

To gain insight into the parameter regime for isospin
polarization occurs we use a simple constant interaction
model, refining it in the subsequent analysis of momen-
tum polarized order. The isospin order is a result of
a Stoner instability arising from the exchange energy,
which can be written as

Eex = �1

2

X

ipp0

Vp�p0nipnip0 , (4)

where i indexes isospin as in Eq.(3). Below, for simplicity,
we model the interaction as a local interaction, Vp�p0 =

V . The onset of SU(4) isospin polarization is determined
by the Stoner criterion:

V ⌫ = 1, (5)

with the density of states ⌫ in the conduction band,

⌫ =
m

2⇡

µp
µ2 �D2

⇡ m2

(2⇡)2
D

n
. (6)

Here we have used the expression for the electron density
in the single-electron picture, n = m

2⇡

p
µ2 �D2, taking

the chemical potential to lie near the bottom of the band,
µ ⇠ D. With this, we estimate the carrier density at
the onset of the Stoner instability, finding a fan of phase
boundaries n vs. D for M = 1, 2 or 3 isospin species:

nD = M
Vm2D

(2⇡)2
. (7)

For BG parameters m = 0.028me[42–44], V =
103 meVnm2 [47], this simple model predicts an isospin
ordering transition at carrier densities nD ⇠ 1012cm�2

for the values of the interlayer bias D = 100 meV, in
good agreement with Ref.[27].
The resulting phase diagram, obtained by comparing

energies of partially polarized states with M = 1, 2, 3
and 4 isospin species, is shown in Fig. 1 a). The in-
set in the lower right corner shows electron dispersion
near charge neutrality, with the Fermi level marked by
a red dashed line. The yellow area represents the dis-
ordered phase where all four isospin species are equally
filled. Purple, light blue and green mark stability regions
for isospin-ordered states. The insets at the top illustrate
the layer-cake structure of electron distribution in each
of the phases, with the Fermi seas for di↵erent isospin
species shown in di↵erent colors. The gray region near
charge neutrality marks the band insulator phase with
an unoccupied conduction band. The dashed rectangle
marks the region of low carrier density on which the sec-
ond half of this paper will focus. As we will see, trigonal
warping of the conduction band flattened by the exter-
nal field D gives rise to Fermi sea breakups and level-two
symmetry breaking through spontaneous momentum po-
larization. This behavior is summarized in the phase di-
agram in Fig. 1 b).
Because of the SU(4) symmetry of our model, the

phase diagram in Fig. 1 a) is insensitive to the order
parameter orientation in the isospin space. However,
in reality, small valley anisotropy in the Hamiltonian,
e.g. trigonal warping or intervalley scattering, can lift
the SU(4) degeneracy and favor a certain orientation in
isospin space. These competing e↵ects will be discussed
elsewhere. Yet, the symmetry aspects of di↵erent or-
ders can be understood very generally without detailed
knowledge of the order that is ultimately favored. Table I
summarizes the results of our symmetry analysis[47] for
phase 1 (fully polarized isospin). In this case there are
two possible phases, Oz

1 and Oxy
1 , describing orders with
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irreps matrices O1 broken symmetries Ohmic conductivity spatial modulation Hall conductivity

A2,�, 1D ⌧3 O
z
1 = P

±z
⌧ P

m
s mirror, time reversal isotropic none nonvanishing

E±K , 2D (⌧1, ⌧2) O
xy
1 = P

�
⌧ P

m
s rotation, mirror, translation anisotropic Kekulé order vanishing

TABLE I. Symmetry classification of di↵erent isospin orders. Listed are results for two real irreducible representations (irreps)
of the field-biased BG space group under which the valley-space Pauli matrices ⌧1,2,3 can transform; other irreps are not
realized by isospin-polarized orders. Column 1 lists the irreps and their dimensions. In column 3, the projection operators in
valley and spin space constituting the order parameter are: P

±z
⌧ = 1

2 (1± ⌧3), P
�
⌧ = 1

2 (1 + �1⌧1 + �2⌧2), P
m
s = 1

2 (1 + s ·m),

where � = (�1, �2)
T with real �1,2, m = (m1,m2,m3)

T is an arbitrary three-dimensional real vector. Columns 4-7 list broken
symmetries and signature observables (see text).

valley imbalance and intervalley coherence, respectively.
These two order types break di↵erent symmetries and
have di↵erent signature observables as a result.

Next, we turn to discussing momentum-polarized or-
dered states that are unique to field-biased BG. These
orders arise through an instability in which an isospin-
polarized Fermi sea breaks up into several distinct pock-
ets that shift towards minima of the conduction band.

It is instructive to start with a qualitative discussion
of how this instability comes into play. There is an
anisotropy in a realistic BG bandstructure at small mo-
menta due to the trigonal warping term, which is not
included in the minimal description of band structure
Eq. (1). This anisotropy leads to a three-pocket shape of
Fermi surface in the regime of extremely low carrier den-
sity. As a result, for each isospin, instead of uniformly
filling all three pockets, there are three candidate elec-
tron configurations for the ground state, in which either
one, two or all three pockets are filled. Which one wins is
determined by the competition between the kinetic and
the exchange energy. The kinetic energy favors the con-
figuration where all pockets are uniformly filled, whereas
the exchange energy is optimized when all electrons are
placed in the same pocket, since the interpocket exchange
interaction is weaker than the intrapocket one.

To estimate of the energy scales that govern this com-
petition, we consider the total single-particle kinetic en-
ergy for all carriers condensed in one pocket:

EK ⇠ n2/2⌫⇤, (8)

where ⌫⇤ ⇠ 5⇥10�5 meV�1 nm�2 is the density of states
at the bottom of a single pocket[47]. To study the pocket
polarization, we take into account the momentum depen-
dence of the interaction. Then the exchange part of the
energy is:

Eex ⇠ �2⇡e2

|p| n
2 ⇠ �

p
⇡


e2n3/2 (9)

where the dielectric constant  accounts for screening.
We estimate the characteristic momentum scale |p| as
|p| ⇠

p
4⇡n. As a result, the exchange energy dominates

at su�ciently small density n . n⇤ = 4⇡
2 e4⌫2⇤ ⇠ 1011

cm�2, where we have used a realistic value D ⇠ 100
meV and  ⇠ 5 similar to dielectric constant in mono-
layer graphene. The realistic  values will depend on the
experimental setup.

FIG. 2. a) Conduction band dispersion flattened by trans-
verse field. Trigonal warping interaction creates three mini-
valleys, at low carrier density giving rise to three electron
pockets (red contours). b) A toy model for the three-pocket
band structure. c) Schematic for pockets positioned near K

and K
0 points. d) The distribution of the Berry curvature in

the conduction band near K point. Parameters used: bias
potential D = 100 meV, chemical potential µ = 90 meV [47].
The value µ < D reflects the e↵ect of the trigonal warping.

Next, we consider a simple model that accounts for
pocket ordering and work out a phase diagram for re-
alistic system parameters. We use a simple low-energy
model consisting of three parabolic bands representing
the three electron pockets in the conduction band:

Hi(p) = (p� ki)
2/2m⇤, (10)



4

where i = 1, 2, 3 labels the pockets, with the pocket cen-
ters ki positioned at the three minima of the conduction
band, k1 = k⇤(0, 1), k2,3 = k⇤(⌥

p
3/2,�1/2). The k⇤

values and the e↵ective masses m⇤ of the pockets are
extracted from a realistic band structure [47].

For clarity, we focus on the e↵ects arising in phase
1, where the additional e↵ects of densities in di↵erent
isospin states is absent. Here, there are three possible
candidate ground states in which electrons fill up one,
two or all three pockets. To determine which one of
them is the true ground state, we compare their ener-
gies EN (N = 1, 2, 3 is the number of occupied pock-
ets) at the same total carrier density n. Their energies

EN = E(N)
K +E(N)

ex consist of kinetic and exchange energy
contributions. Using the fact that the density of states
in each pocket is a constant ⌫⇤ = m⇤/2⇡, we can write
the total kinetic energy as

E(N)
K =

N

2⌫⇤

n2

N2
=

⇡n2

Nm⇤
(11)

In order to explore the pocket polarization, we restore the
momentum dependence of the interaction in the exchange
part of the free energy:

E(N)
ex = �1

2

NX

i,j=1

X

p,p0

Vp�p0nipnjp0 , Vp�p0 =
2⇡e2

|p� p0| ,

(12)
where nip is the occupation number at momentum p
measured relative to the pocket i center. For simplic-
ity, as in Eq.9, we use momentum-independent dielectric
constant . When the carrier density is small, the inter-
pocket exchange interactions yield a nearly momentum-
independent renormalization of the energy of each elec-
tron, which justifies approximating the Fermi surfaces in
the pockets by discs centered at k⇤i. From this, we have

E(N)
ex = �1

2

NX

i,j=1

X

p,p0

Vp�p0+kijnpnp0 , (13)

where kij = ki � kj are momentum di↵erences between
pocket centers, np is the occupation number of the state
with momentum p measured relative to pocket center
np = 1� ✓(|p|� p0). Here p0 is the radius of the circular
Fermi surface in each pocket

p0 =
p
4⇡n/N. (14)

With these expressions, the exchange energy can
be evaluated analytically by performing the Fourier
transform[47], giving

E(N)
ex = �e2p40

16⇡

X

ij

1Z

0

dr [J2(rp0) + J0(rp0)]
2 J0(r|kij |).

(15)
Our circular-pocket approximation is expected to be ac-
curate when the distance k⇤ from pocket centers to K

point is much greater than the pocket radius p0. This
yields an upper bound for carrier density: n . 0.3⇥ 1012

cm2, where we used the value of k⇤ estimated in[47]. As
Fig. 1 a) indicates, the maximal density in phase 1 always
satisfies the above validity condition. We can therefore
use the results in Eqs. (11),(15) to determine the phase
diagram by comparing the energies of one-pocket, two-
pocket and three-pocket configurations.

The resulting pocket polarization phase diagram in the
small density regime is shown in Fig. 1 b). At lowest car-
rier density, exchange energy dominates and all electrons
prefer to condense in a single pocket. Upon carrier den-
sity increasing, the system undergoes phase transitions,
first to a two-pocket configuration, and then to a three-
pocket (unpolarized) phase. For illustration, in Fig. 1
b), we set the dielectric constant to be  = 2, so that the
phase diagram showcases all possible phases. The details
of the phase diagram observed in experiment may vary
from system to system, since the competition of pocket
orders is sensitive to screening e↵ects that depend on the
experiment setup. If screening is made stronger [e.g. by
a proximal gate], the pocket unpolarized state will be
suppressed compared to that shown in Fig. 1 b). Al-
ternatively, if the screening is made weaker, the pocket-
polarized phase will expand, taking over a larger part of
the phase diagram. We note that the energy di↵erence
between the pocket polarized and unpolarized states is of
the order of 0.1meV to 1meV per carrier, yielding a read-
ily accessible ordering temperature scale of a few kelvin.

Finally, we discuss manifestations of momentum-
polarized states. Individual pocket can of course be iden-
tified through the quantum oscillations e.g. of magne-
toresistance. The oscillation frequency as a function of
inverse transverse magnetic field measures the area of the
Fermi surface. Taken relative to the net carrier density,
the oscillation frequency will be reduced by a factor of
1/N once N pockets form.

Crucially, the pocket-polarized states further break the
crystallographic symmetries, leading to distinct e↵ects
that can be probed by the symmetry-sensitive measure-
ments discussed above. Indeed, two possible orders of
the parent phase, i.e. phase 1, correspond to two kinds
of broken symmetries— either breaking only mirror sym-
metry, or breaking rotation, mirror and translation sym-
metries (see Table I). If phase 1 only breaks mirror sym-
metry, then populating one or two out of three pock-
ets will further break the three-fold rotation symmetry
without breaking the translation symmetry, leading to
electron nematicity. This symmetry breaking can be ob-
served by measuring the anisotropy in the conductivity.
If, however, the parent isospin order is intervalley coher-
ent, then the only remaining symmetry to be broken in
the pocket-polarization transition is the translation sym-
metry. Namely, the pocket polarization on top of val-
ley coherent states transforms the Kekulé charge density
wave into an incommensurate density wave which carries
momentum Pi,i0 = 2K+k⇤i+k⇤i0 , i = 1, 2, 3, k⇤i0 = �k⇤i,
see Fig. 2 c). In this case, the pocket order can be de-
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tected by imaging long-period spatial modulations.
Pocket polarization can also be detected by measur-

ing the Hall conductivity. When the pocket polarization
happens on top of the valley imbalance order Oz

1 which
allows a nonvanishing Hall conductivity, the Hall con-
ductivity changes abruptly since the Berry curvature is
non-uniform near K point [see Fig. 2 d)]. If the pocket
polarization occurs on top of Oxy

1 isospin order, which
originally respects the time reversal symmetry, enforc-
ing a vanishing Hall conductivity, then the onset of the
pocket polarization can break the time-reversal symme-
try so long as electrons populate di↵erent pockets in val-
leys K and K 0 [e.g. pocket 1 and 20 in Fig. 2 c)]. As a
result, the Hall conductivity will jump from zero to some
finite value at the pocket ordering transition. Therefore,
regardless of the form of the parent isospin order, we
always expect a discontinuous behavior in Hall conduc-
tance at the onset of pocket orders.

Another experimentally accessible signature of the

Berry curvature is magnetization due to orbital currents
in the system ground state. The magnetization can be
estimated using the approach described in Refs.[45, 46],
giving ⇠ 3 Bohr magnetons per electron for the param-
eters used in Fig.2 d). This is few times larger than the
orbital magnetic moments of electrons in a Landau level,
which are readily measurable.
In conclusion, we predict that exchange interactions

drive the pocket polarization that emerges on top of an
isospin polarized phase in field-biased BG. This new or-
der further breaks the crystallographic symmetries in the
isospin polarized parent phase. Depending on the isospin
orientation of the parent phase, the pocket polarization
can either break the rotation symmetry or the translation
symmetry, resulting in either nematic order or an incom-
mensurate Kekulé density wave order. The new orders
arise through phase transitions showing interesting inter-
play with the cascade of isospin-polarized phases familiar
from other flatband systems.
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Rev. B 100, 085136 (2019)

[27] H. Zhou, Y. Saito, L. Cohen, W. Huynh, C. Patterson,
F. Yang, T. Taniguchi, K. Watanabe, and A. F. Young,
Isospin magnetism and spin-triplet superconductivity in
Bernal bilayer graphene, arXiv: 2110.11317

[28] H. Zhou, T. Xie, A. Ghazaryan, T. Holder, J. R. Ehrets,
E. M. Spanton, T. Taniguchi, K. Watanabe, E. Berg, M.
Serbyn, A. F. Young. Half and quarter metals in rhom-
bohedral trilayer graphene, arXiv:2104.00653.

[29] V. Cvetkovic, O. Vafek, Topology and symmetry break-
ing in ABC trilayer graphene, arXiv:1210.4923.

[30] Y. Lee, S. Che, J. Velasco Jr., D. Tran, J. Baima, F.
Mauri, M. Calandra, M. Bockrath, C. N. Lau, Gate Tun-
able Magnetism and Giant Magnetoresistance in ABC-
stacked Few-Layer Graphene, arXiv:1911.04450

[31] Electronic properties of a biased graphene bilayer E. V.
Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres,
J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K.
Geim and A. H. Castro Neto

[32] T. Stauber, E. V. Castro, N. A. P. Silva and N. M. R.
Peres, J. Phys.: Condens. Matter 20 335207 (2008)

[33] H. Min, G. Borghi, M. Polini, and A. H. MacDon-
ald,Pseudospin magnetism in graphene, Phys. Rev. B 77,
041407(R) (2008)

[34] R. E. Throckmorton and S. Das Sarma, Quantum multi-
criticality in bilayer graphene with a tunable energy gap
Phys. Rev. B 90, 205407 (2014)

[35] J. Jung, M. Polini, and A. H. MacDonald, Persistent cur-
rent states in bilayer graphene, Phys. Rev. B 91, 155423
(2015)

[36] Yang-Zhi Chou, Fengcheng Wu, Jay D. Sau, Sankar Das
Sarma, Acoustic-phonon-mediated superconductivity in
Bernal bilayer graphene, arXiv:2110.12303

[37] Y. Saito, F. Yang, J. Ge, et al. Isospin Pomeranchuk
e↵ect in twisted bilayer graphene. Nature 592, 220–224
(2021).

[38] U. Zondiner, A. Rozen, D. Rodan-Legrain, et al. Cascade
of phase transitions and Dirac revivals in magic-angle
graphene. Nature 582, 203–208 (2020).

[39] A. Rozen, J. M. Park, U. Zondiner, et al. Entropic evi-
dence for a Pomeranchuk e↵ect in magic-angle graphene.
Nature 592, 214–219 (2021).

[40] Y. Choi, H. Kim, Y. Peng, et al. Correlation-driven topo-
logical phases in magic-angle twisted bilayer graphene.
Nature 589, 536–541 (2021).

[41] A. T. Pierce, Y. Xie, J. M. Park, E. Khalaf, S. H. Lee, Y.
Cao, D. E. Parker, P. R. Forrester, S. Chen, K. Watan-
abe, T. Taniguchi, A. Vishwanath, P. Jarillo-Herrero, A.
Yacoby, Unconventional sequence of correlated Chern in-
sulators in magic-angle twisted bilayer graphene, arXiv:
2101.04123

[42] A. S. Mayorov, D. C. Elias, M. Mucha-Kruczynski, R. V.
Gorbachev, T. Tudorovskiy, A. Zhukov, S. V. Morozov,
M. I. Katsnelson, V. I. Fal’ko, A. K. Geim, and K. S.
Novoselov, Science 333, 860 (2011).

[43] J. Velasco Jr., L. Jing, W. Bao, Y. Lee, P. Kratz, V.
Aji, M. Bockrath, C. N. Lau, C. Varma, R. Stillwell, D.
Smirnov, F. Zhang, J. Jung, and A. H. MacDonald, Nat.
Nanotechnol. 7, 156 (2012).

[44] E. McCann and M. Koshino, The electronic properties of
bilayer graphene, Rep. Prog. Phys. 76 056503 (2013)

[45] Di Xiao, Ming-Che Chang, and Qian Niu, Berry phase
e↵ects on electronic properties, Rev. Mod. Phys. 82, 1959
(2010)

[46] F.Aryasetiawan, K.Karlsson, Modern theory of orbital
magnetic moment in solids, In: Journal of Physics and
Chemistry of Solids. 128, 87-108 (2019)

[47] See Supplementary Information.

http://arxiv.org/abs/2104.00653
http://arxiv.org/abs/1210.4923
http://arxiv.org/abs/1911.04450
http://arxiv.org/abs/2110.12303


7

SUPPLEMENTARY INFORMATION FOR “ISOSPIN FERROMAGNETISM AND MOMENTUM
POLARIZATION IN BILAYER GRAPHENE”

A. Field-biased bilayer graphene bandstructure

1. Two-band single-particle Hamiltonian

The two-layer model is derived [44] under the assumption that intra- and interlayer hoppings (A1B1 and A2B1-type
terms in the original Hamiltonian, which are 3.16 eV and 0.38 eV, correspondingly ) are much larger than all the
other energy scales. The single-particle Hamiltonian can be written as:

H0 =
X

p

 †
i [h0 + ht + ha + hD0 ]ij  j (S1)

h0 = h1(p)⌃1 + h2(p)⌃2 +D�3 (S2)

ht = v3 (p2⇤1 + p1⇤2) (S3)

ha =
1

2ma
p2 (S4)

hD0 = �D
p2

p2D
�3 (S5)

Note that we rotated the basis by 90� with respect to Ref. [44]. Here h0 is the minimal model Hamiltonian that we
start our consideration from in Eq. (1). ht produces the trigonal warping; ha produces the particle-hole asymmetry
and hD0 is the momentum-dependent contribution that is proportional to the displacement field with pD ⇡ 0.058/aCC

a D-independent constant (see Table II). The matrices are:

⌃1 = �1, ⌃2 = ⌧3�2, ⇤1 = ⌧3�1, ⇤2 = �2 (S6)

(S7)

and the coe�cients of h0 can be written as:

h1(p) = � 1

2m

�
p22 � p21

�
(S8)

h2(p) =
1

2m
(2p1p2) . (S9)

We measure the energies in meV and the momentum is made dimensionless by multiplying by the carbon-carbon
atom distance aCC = 1.46 Å. The relevant system parameters are given in Table II.

parameter value parameter value

a 2.46 Å v 1.1⇥106 m/s

�0 3.16 eV v3 1.3⇥105 m/s

�1 0.381 eV v4 4.8⇥104 m/s

�3 0.38 eV m 0.028 me

�4 0.14 eV ma 0.19 me

D 0� 100 meV pDaCC 0.058

TABLE II. Parameters in the Hamiltonian computed based on values in Ref. [44]. The velocities are defined as vi = (
p
3/2)a�i

(~ = 1 throughout the Supplement). The BG band mass is defined as m = �1/2v
2 ⇡ 0.028me.

2. Projection on the conduction band

The projection to conduction band discussed in main text is formally written as following transform:

M ! M̃ = tr�(P̂M), (S10)
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where tr� is the partial trace over sublattice degrees of freedom, the projection operator P̂ is defined as

P̂ =
1

2

✓
h0(p)

E(p)
+ 1

◆
, E(p) =

s

D2 +

✓
p2

2m

◆2

. (S11)

After projection, the single-particle part of the minimal model Hamiltonian becomes diagonal

H̃0 =
X

ip

E(p) ̃†
i,p ̃i,p, i = K ",K #,K 0 ",K 0 # (S12)

where  ̃i,p is the field operator of conduction band electrons in two valleys and two spins. From now on, we write the
spin indices explicitly.

In this paper, we focus on the e↵ect of electron-electron interaction, which we modeled as a density-density coupling:

Hint =
X

pp0q

Vq 
†
i,p 

†
j,p0 j,p0�q i,p+q (S13)

At large D, the form of density-density interaction is invariant under projection:

H̃int =
X

pp0q

Vq ̃
†
i,p ̃

†
j,p0  ̃j,p0�q ̃i,p+q (S14)

Here, similar to Eq.(S12), i and j take values K ", K #, K 0 ", K 0 #.

B. Estimating interaction strength V

In the main text, when numerically calculating the phase diagram, we are using the value of V to represent the
strength of exchange interaction. Here, we provide an estimate for the values of V .

The interaction strength we used in our model in main text should correspond to the strength of the screened
Coulomb interaction at the relevant momentum, which is Fermi momentum p0, i.e.

V = Ṽp0 . (S15)

Accounting for Thomas-Fermi screening, the screened Coulomb potential takes the following form

Ṽp0 =
Vp0

1 + Vp0⇧p0

, (S16)

where ⇧p0 is the polarization function at Fermi momentum. We estimate this quantity using the value of density of
states at Fermi surface ⌫0. When the band is flat compared to the interaction energy, which is the case of our interest,
we have

⌫0Vp0 � 1 (S17)

In this regime, the screened Coulomb interaction is approximately

Ṽp0 =
1

⌫0
. (S18)

Therefore, we can estimate the interaction as

V ⇠ 1

⌫0
⇠ 103 meV nm2 (S19)

where we have used ⌫0 ⇠ n/W ⇠ 10�3 meV nm�2, where n is the carrier density n ⇠ 1012 cm�2, W ⇠ 10meV is the
Fermi energy measured from the band bottom at this carrier density.
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C. A symmetry-based analysis of the isospin polarized states

Importantly, we can understand the symmetry aspects of di↵erent orders regardless of detailed knowledge of which
order is ultimately favored. Below, we describe the possible order types, classify them through the symmetry of our
problem. For simplicity, we focus on the case of phase 1, where only one of the isospin species is populated. Other
orders can be studied in a similar manner. In this phase the order parameter is simply a projection onto the state
with a given valley-spin orientation. Therefore, it takes the form of

O1 = |vihv| (S20)

where v is an arbitrary normalized complex-valued four-component spinor in the isospin space, |vi = (↵1|u1i,↵2|u2i)T
where |u1i, |u2i are arbitrary normalized two-component state vectors in the spin subspace, ↵1,↵2 are positive real
numbers, ↵2

1 + ↵2
2 = 1. Overall phases are absorbed in |u1i and |u2i. The symmetry analysis of the Pauli matrices

in valley basis (see Table I) indicates that ⌧1,2 and ⌧3 transform under di↵erent irreducible representations. Thus, an
order parameter containing ⌧1,2 matrices and another one containing ⌧3 corresponds to di↵erent broken symmetries.
Therefore, to classify orders by symmetry, we look for an order parameter, O, that contains ⌧3 or ⌧1,2 matrices
only, but not a mixture of ⌧3 and ⌧1,2. This gives two possible types of the order parameter with distinct symmetry:
Oz

1 = 1
4 (1± ⌧3) (1 + s ·m) and Oxy

1 = 1
4 (1 + �1⌧1 + �2⌧2) (1 + s ·m). Here, m is an arbitrary vector determining the

spin direction, and (�1, �2) is an arbitrary normalized real-valued vector. The order Oz
1 represents a valley imbalance

order, which transforms under A2,� and thus, features a breakdown of the mirror symmetry that swaps the two
valleys. The other option, Oxy

1 , corresponds to the intervalley coherent order that transforms under E±K . It breaks
the three-fold rotation, reflection and translation symmetries of the original model. This aspect clearly di↵erentiates
the AB bilayer graphene from the case of ABC trilayer: in the latter, the intervalley coherent state does not break
the C3 rotation symmetry[29]. The symmetry classification of possible orders in AB bilayer graphene is summarized
in Table.I in the main text.

Our symmetry analysis allows us to identify two observables that distinguish the valley imbalance and intervalley
coherent orders in phase 1. These are anisotropy of conductivity and a spatial charge density wave modulation. For
valley imbalance order Oz

1 , neither rotation nor translation symmetry of the space group is broken, so the conductivity
is isotropic and there is no spatial pattern. In comparison, for the valley coherence order Oxy

1 , both rotation and
translation symmetries are broken. The broken rotation symmetry leads to an anisotropic conductivity, whereas the
broken translation symmetry leads to a spatial pattern with momentum 2K, i.e. a Kekulé charge density wave. On
a di↵erent note, the temporal symmetry can be probed by the Hall conductance. For the valley imbalance order
Oz

1 where time reversal symmetry is broken, the Hall conductivity is nonvanishing. In comparison, the intervalley
coherent order Oxy

1 preserves time reversal symmetry, guaranteeing a vanishing Hall conductance. These observables
are summarized in the last three columns in Table I in the main text.

D. Three-pocket model

In this section, we explain how we extract the parameters p⇤ andm⇤ we used in three-pocket model from the realistic
BG band structure. As we only care about the band dispersion near the band minima, we model the three-pocket
band structure using three isotropic parabolic bands:

Hi(p) =
(p� ki)2

2m⇤
, i = 1, 2, 3 (S21)

where i labels the pockets, p0is are the centers of pockets, corresponding to three minima of the conduction band:

k1 = k⇤(0, 1), k2 = k⇤(�
p
3

2
,�1

2
), k3 = k⇤(

p
3

2
,�1

2
). (S22)

where we specify the values of k⇤ and m⇤ below.
In order to relate the three-pocket bandstructure represented by three parabolas to the single-particle bandstructure

shown before, we first adopt a minimal model that possesses thee pockets at large displacement field D. This model
has the Hamiltonian

Hmin
3�p =

X

p

 †
ip [h0(p) + ht(p) + hD0(p)]ij  jp (S23)
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We find the value of k⇤ by expanding in large D and treating the trigonal warping term perturbatively:

k⇤(D) ⇡ pD

✓
4

75

ED

D
+

4

5

D

ED

◆
, ED =

p2D
2m

⇡ 0.2 eV, (S24)

In the main text, we used the expression k⇤(D) given in Eq.(S24) when numerically computing phase diagram. But
when estimating the validity condition of toy model, we used the value of k⇤ at D = 100meV for simplicity, which is
k⇤(100meV) ⇡ 0.03/aCC.

The massm⇤ is a parameter that we introduced in the three-pocket toy model to mimic the bottom of the conduction
band from (S23). As we are interested in instabilities, the most important quantity we need to mimic with toy model
is the density of states. Therefore, below, we determine the value of m⇤ in our toy model so that it reproduces the
density of states of the original model. The Hamiltonian Eq.(S23) near one of the minimum takes the following form

H(k1 + �p) =
�p2x
2m⇤?

+
�p2y
2m⇤k

(S25)

where

m⇤k = 0.57m
EDD

0.07E2
D +D2

, m⇤? =
0.18pD

v3
(S26)

The density of states in the model (S23) is given by

⌫ =
1

2⇡
p
m⇤?m⇤k. (S27)

Therefore, to reproduce the same density of states in our toy model Eq.(10), we set m⇤ =
p
m⇤?m⇤k.

E. Exchange energy in the three-pocket model

In this section, we calculate the exchange energy discussed in main text:

E(N)
ex = �

NX

i,j=1

X

p,p0

1

2
Vp�p0+kijnpnp0 , Vp�p0 =

2⇡e2

|p� p0| , np = 1� ✓(|p|� p0). (S28)

where kij = k⇤i � k⇤j is the momentum di↵erence between two pocket centers. Exchange energy takes the form of a
convolution. Therefore, we evaluate it by performing Fourier transform:

V (r) =
e2

|r| =
Z

d2p

(2⇡)2
eip·rVp (S29)

and

n(x) =

Z
d2p

(2⇡)2
eip·rnp (S30)

Then, the exchange energy can be written as

E(N)
ex = �1

2

X

ij

Z
d2rV (r)n(r)2eikij ·r = �1

2

X

ij

Z 1

0
V (r)n(r)22⇡J0(r|kij |)xdx (S31)

To evaluate this quantity, we need to first work out the form of n(r):

n(r)=

Z

|p|<p0

dpxdpy
4⇡2

eipxr =

Z
dpx
2⇡2

q
p20 � p2xe

ipxr =
p20
2⇡2

Z ⇡
2

�⇡
2

d✓ cos2 ✓eiz sin ✓ (S32)

=
p20
8⇡

[J2(z) + 2J0(z) + J�2(z)] =
p20
4⇡

[J2(z) + J0(z)] (S33)

where z = rp0. We finally arrive at

E(N)
ex = �e2p30

16⇡

X

ij

Z

0
dz [J2(z) + J0(z)]

2 J0

✓
z|kij |
p0

◆
(S34)
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F. The Berry curvature and orbital magnetization

It is straight forward to compute the Berry curvature using the Hamiltonian Eq. (S23). Below, we first explain
how we compute the Berry curvature in realistic BG model and obtain the result of Fig.2. We take the form of the
Hamiltonian projected to conduction band in Eq. (S23), and rewrite it as

Hmin
3�p =

X

p

 †
iph(p) · ⌧ ij jp, h(p) · ⌧ = [h0(p) + ht(p) + hD0(p)] (S35)

where ⌧ = (⌧1, ⌧2, ⌧3). Then the Berry curvature is given by

⌦p =
1

2

h

|h| ·
✓
@h(p)

@p1
⇥ @h(p)

@p2

◆
. (S36)

In main text Fig.2 we use Eq.(S36) to numerically compute the Berry curvature.
Next, we estimate the orbital magnetization which arises from Berry curvature. Below, we recap the derivation of

orbital moment described in Ref. 45 and 46, and apply it to our model.
As a starting point, we consider the current flowing along the sample boundary, treating it as an anomalous current

arising due to Berry’s curvature and driven by the filed due to spatially varying trapping potential V . This gives a
current value

I = e

Z
dxn(x)v(x) = e

Z
dx

Z
d2p

(2⇡)2
⌦pf(✏p � µ+ V )

@V

@x
(S37)

where x is the coordinate in the direction perpendicular to the boundary. The magnetization per unit area is therefore
given by

M =
IA

A
= e

Z µ

0
⌦FS(µ� V )dV, ⌦FS(E) =

Z
d2p

(2⇡)2
⌦pf(✏p � E) (S38)

To estimate the magnetization value, we apply Eq. (S38) to the three-pocket model used in the main text, taking ⌦p

as a constant ⌦p ⇠ ⌦ within the Fermi sea. This gives

M

µB
⇠ Nm⇤e⌦µ̃2

4⇡
=

Nm⇤me⌦µ̃2

2⇡
. (S39)

where µB is the Bohr magneton, me is the electron mass, N is the number of pockets that are filled, µ̃ is Fermi level
measured from the bottom of the band. We estimate M for the case shown in Fig.2, where N = 3, µ̃ = 10 meV,
m⇤ = 2⇡⌫⇤ = 3⇥ 10�4 meV�1 nm�2 and ⌦ ⇠ 15 nm2 [extracted from Fig. 2], we find

M

µB
⇠ 3⇥ 10�3nm�2 ⇠ 3n (S40)

where we used electron density n = 1011 cm�2, a value corresponding to the regime where pocket polarization is
expected. This predicts a sizable orbital magnetic moment of ⇠ 3 Bohr magnetons per conduction electron.


