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Abstract: Diamond offers good optical properties and hosts bright color centers with long spin
coherence times. Recent advances in angled-etching of diamond, specifically with reactive ion
beam angled etching (RIBAE), have led to successful demonstration of quantum photonic devices
operating at visible wavelengths. However, larger devices operating at telecommunication
wavelengths have been difficult to fabricate due to the increased mask erosion, arising from the
increased size of devices requiring longer etch times. We evaluated different mask materials
for RIBAE of diamond photonic crystal nanobeams and waveguides, and how their thickness,
selectivity, aspect ratio and sidewall smoothness affected the resultant etch profiles and optical
performance. We found that a thick hydrogen silesquioxane (HSQ) layer on a thin alumina
adhesion layer provided the best etch profile and optical performance. The techniques explored
in this work can also be adapted to other bulk materials that are not available heteroepitaxially
or as thin films-on-insulator.

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement

1. Introduction

Diamond is a promising material for realizing photonic devices due to its high refractive index (n
= 2.4), its wide bandgap (5.5 eV) and transparency window, and large-power handling capability.
Leveraging these properties, devices such as nanowires, [1] gratings, [2–4] mirrors, [5] and
metasurface frequency converters [6] have been realized. Diamond also has strong third order
optical nonlinearity which has been leveraged to realize frequency combs, [7] Raman lasers, [8,9]
and supercontinuum sources. [10] Perhaps the most exciting application of diamond is in quantum
photonics enabled by a wide variety of color centers that exist within diamond’s wide bandgap,
featuring bright coherent optical transitions and long spin coherence times. A good example is the
negatively-chargedsilicon-vacancy center (SiV–) that has been integrated into quantum photonic
devices such as photonic crystal nanobeams. [11] These were subsequently used to demonstrate
coupling between SiV– centers and photons with high cooperativity, [12] paving the way for the
creation of quantum memory nodes [13] and memory-enhanced quantum communication. [14]
To produce high-performance quantum photonic devices in diamond, tight confinement of optical
modes with low optical loss is needed. These requirements can be met if diamond devices are
supported by lower-index substrates or are suspended in air (free-standing).

One often pursued approach relies on fabrication of thin diamond films – free-standing or on
low index substrates. In this technique, devices are etched into thin films, which can be created
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either by using a combination of laser slicing and reactive ion etching, or using ion implantation
and electrochemical etching. Recently, a variant of this approach has been developed that uses
diamond regrowth and fusion bonding before electrochemical etching to remove the damaged
layer. [15–17]

An alternative approach relies on machining of bulk diamond substrates using either angled
etching or quasi-isotropic etching to realize free-standing diamond devices. Despite great
promise and versatility offered by isotropic undercut approach, [18–22] including recent work
on device transfer and large scale integration, [23] state of the art quantum photonic devices
are still made using angled-etching approach. [12–14] The first angled etching of diamond was
done by housing the diamond substrate in a home-made Faraday cage within an inductively-
coupled plasma reactive ion etching (ICP-RIE) chamber. [24–26] The Faraday cage modifies the
trajectories of ions in the chamber: instead of travelling at normal incidence to the sample [Fig.
1(a)], they are redirected normal to the Faraday cage boundaries, and hence they travel at oblique
incidence to the sample [Fig. 1(b)]. This results in undercutting of diamond nanostructures
and produces devices with triangular cross sections. Since then, Faraday cage angled etching
has also been used to etch nanocones [27] and multi-layered photonic crystal mirrors [28] in
diamond, as well as nanobeams in other materials such as quartz, [29] gallium nitride, [30]
and silicon carbide. [31, 32] However, the Faraday cage does not redirect the ion trajectories
uniformly, leading to varying degrees of undercut across the substrate. [26] As a result, devices
produced by Faraday cage angled etching are not uniform across the substrate, limiting the
reproducibility on a single substrate and from run to run.

More recently, angled etching of diamond devices has been performed via reactive ion beam
angled etching (RIBAE). [33] In this method, the ion beam is generated in an ion gun external
to the etching chamber, and collimated and accelerated towards the chamber through a series of
grids [Fig. 1(b)]. Importantly, the ion beam can be made uniform over an area of diameter as
large as 4-inch, in the case of the tool used in this work. This, combined with automatic stage
tilt and continuous rotation during the etch process, ensures improved undercut etch uniformity
over the entire area of a bulk diamond substrate, which is on the order of 4 mm × 4 mm. RIBAE
has been used successfully to fabricate photonic devices like diamond mirrors, [5] dispersion
engineered waveguides for supercontinuum generation, [10] and photonic crystal cavities used
in cavity QED experiments. [12–14] The main challenge of the angled etching approach is mask
erosion and deformation, more significant than in vertical etches, that ultimately limits the width
of the devices that can be realized. This is because in angled etching, the incident ion beam
impinges on the mask at an oblique angle, and the sidewalls of the mask sees a non-zero ion
flux. As a result, mask material is sputtered from its sides, leading to lateral mask erosion.
In addition, for amorphous or polycrystalline materials typically used for masks, sputtering
yields at oblique incidence is higher than at normal incidence [34], leading to greater vertical
mask erosion rates in angled etching compared to conventional top-down etching. Furthermore,
mask erosion ultimately impacts the Q of fabricated devices by modifying cross section shapes.
Consequently, while devices operating in visible could readily be achieved, larger devices
operating at telecommunication wavelengths have been elusive given the greater extent of mask
erosion arising from longer etch times.

To address these challenges, we compared different mask materials suitable for RIBAE. We
examined the requirements for different nanophotonic geometries, such as photonic crystal
nanobeam cavities and waveguides. These results provide insights into the nature of lateral
erosion of masks during angled diamond etching, enabling improved optical performance of
fabricated devices. We also benchmark the measured optical Q of devices fabricated in RIBAE
with different mask materials against previous devices fabricated using Faraday cage angled
etching. [35] Furthermore, the results of this study can be adapted to any material for which no
thin film platform is available, and where fabrication must be done from bulk substrates.
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Fig. 1. Comparison between conventional reactive ion etching (RIE), angled RIE,

and ion beam etching. (a) Schematic for conventional reactive ion etching (RIE). (b)

Schematic of angled RIE using a Faraday cage to modify ion trajectories after entering

the cage. ! is the half-apex angle of the cage. Right: Photograph of Faraday cage with

sample mounted inside it. (c) Schematic of ion beam etching, with stage tilted at angle

! relative to ion beam. (d) process flow for angled etching: (i) mask definition, (ii)

anisotropic etching, (iii) angled etching, (iv) mask removal. ! defines the etch angle,

related to the Faraday cage half-apex angle in (b) and the stage angle in (c).

We begin by offering a general analysis of the problem of angled ion beam etching of
photonic devices. A proper mask material for angled etching processes should be sufficiently
thick, have high selectivity, good aspect ratio tolerance, high resolution and smooth sidewalls.
A sufficiently thick mask is required to withstand erosion during both vertical and angled etches.
The mask should also have a high selectivity to diamond during the etching processes, since
low selectivities lead to high vertical and lateral erosion rates in both vertical and angled etches,
which will change the mask shape and deform the final device geometry. For photonic crystal
nanobeams, which are nanobeam waveguides with quasi-periodic perforations along its length,
the mask needs to be made thick enough to protect the incident ion beam from etching into the
perforations and inducing sidewall roughness. As these geometries have features with small
lateral dimensions relative to the thickness, the mask would need a good tolerance to high aspect
ratios; this also requires high resolution in the lithography process for the mask to be accurately
defined throughout the depth of the mask. Finally, smooth sidewalls are needed for the mask
material, as roughness in the mask that is transferred into diamond during the etching processes
will result in higher optical scattering loss rates.

We evaluated several combinations of mask materials in this work: (i) hydrogen silesquioxane
(HSQ) on titanium (Ti) adhesion layer (hereafter shortened to HSQ-Ti); (ii) HSQ on niobium



(Nb) adhesion layer, (HSQ-Nb); (iii) templated Nb or alumina using poly(methyl methacrylate)
(PMMA); and (iv) HSQ on alumina adhesion layer (HSQ-alumina).

2. Device design, fabrication, and measurement

The fabrication process we used to evaluate different mask materials consists of four steps [Fig.
1(d)]: defining the mask material, vertical etching to transfer the mask pattern into diamond,
angled etching to undercut diamond to suspend devices above the substrate, and removing the
mask material to produce the final suspended devices. In a device with triangular cross section,
its thickness " is related to its width # through the etch angle $, via the relation " = #/(2"%&$).
To fully suspend the structures, the vertical etch depth should theoretically be at least the final
thickness of the device. In practice, the etch depth is chosen to be larger to take into account
evanescent leakage of light into the substrate for nanophotonic devices, and non-uniformity of
etching photonic crystal devices in particular, where vertical etch rates in narrow features are
lower than that in the wider ones.

Prior to mask definition, the diamond substrate was cleaned in 49% hydrofluoric acid (HF)
for 5 minutes, piranha solution (96% sulfuric acid and 30% hydrogen peroxide in 3:1 ratio) for
5 minutes, then ultrasonic agitation in acetone followed by methanol, and finally dried with a
nitrogen gun. Following the mask definition process, which will be explained in further details
for each mask material, a vertical oxygen etch was performed in a PlasmaTherm Versaline ICP-
RIE system to transfer the mask pattern into diamond. This recipe used a flow of 40 standard
cubic centimeters per minute (sccm), pressure of 10 milliTorr, bias and ICP powers of 100 W
and 700 W.

Angled etching with RIBAE was done with an Intlvac Nanoquest Ion Beam Etching System
using oxygen ion beams from a Kaufman & Robinson ion beam source. Two recipes were used
in this work: (i) beam voltage 200 V, accelerator voltage 26 V, beam current 100 mA, ICP power
170 W, oxygen flow 38 sccm; (ii) beam voltage 150 V, accelerator voltage 22 V, beam current
80 mA, ICP power 130 W, oxygen flow 30 sccm. For both recipes, the stage angle was ! = 45◦.

For mask removal, the diamond substrate with devices was immersed in a solution of 49%
HF and 60% nitric acid in 1:1 ratio for 5 minutes, followed by piranha solution for 5 minutes,
and lastly dried through a critical point drying process with carbon dioxide.

The photonic crystal devices in this work consist of a clamp on one end, followed by the
photonic crystal, a tapered support to provide tethering to the substrate via a thin fin that does
not induce coupling losses, [25] and finally a tapered waveguide for adiabatic fiber coupling
to tapered fibers fabricated by pulling out of HF solution. [36–38] These tapered fibers were
placed in contact with the tapered diamond waveguide, using motorized stages, for efficient
adiabatic coupling of light into the photonic crystal. The photonic crystal is designed to support
a fundamental quasi-transverse electric (TE) mode near 1550 nm, and has a less reflective mirror
on the end closer to the tapered waveguide than the end closer to the clamp, so as to increase
coupling through the waveguide. Optical reflection spectroscopy was performed by coupling
light from a tunable laser source (Santec TSL) and measuring the resultant reflection from the
photonic crystal using a photodetector (New Focus).

Racetrack resonators in this work are designed to have resonances in the telecommunication
wavelength range, and are tethered to the substrate by a thin fin at the bottom apex of the cross
section. This provides structural stability while minimizing optical losses into the substrate. [25]
Optical Q’s of fabricated ring resonators were measured by coupling light from a tunable laser
source (Santec TSL) evanescently through a tapered fiber (ThorLabs), [25] which was tapered
to a diameter of ∼ 1 'm by pulling under a hydrogen flame. The position of the tapered fiber
was controlled with motorized stages and optimized for critical coupling to the ring resonator.
The resulting transmission was measured with a photodetector (New Focus). [25, 33]
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Fig. 2. Angled etching using hydrogen silesquioxane (HSQ)-Ti mask. (a) Schematic

of HSQ-Ti mask stack for angled etching. (b) Scanning electron microscope (SEM)

image of asymmetric cross-section from Faraday cage angled etching without cage

rotation. (c) SEM image of a symmetric cross-section with Faraday cage rotation

between etches. (d) SEM image of beam cross-section during RIBAE with continuous

stage rotation. (e) SEM image of symmetric beam cross-section after RIBAE with

continuous stage rotation. (f) Close up view of the cross-section in (e), showing mask

redeposition near the top edge. (g) SEM image of photonic crystal after angled etching

with HSQ-Ti mask, showing excessive mask erosion and redeposition. Scale bars in

(b) – (e), (g) represent 1 'm. All SEM images were taken at a 60◦ tilt.

3. Results for different mask methods

3.1. HSQ-Ti mask

We first considered a mask with hydrogen silesquioxane (HSQ; FOx-16, from Dow-Corning) and
titanium (Ti) [Fig. 2(a)]. HSQ is a negative-tone electron beam resist that cures to form silicon
dioxide after electron beam lithography (EBL) and development, while Ti serves as an adhesion
layer between HSQ and diamond, as well as a charge compensation layer for the lithography
process. After cleaning of the diamond substrate, the mask definition proceeded first through
electron beam evaporation (Denton) of a 40 nm layer of Ti, followed by spin-coating of HSQ.
For fabricating photonic crystals operating in the telecommunication wavelength range (around
1550 nm), a 1 'm layer of HSQ was needed to shadow the holes from being etched during the
angled etching process. This was followed by electron beam lithography (125 keV, Elionix) and
development in 25% tetramethylammonium hydroxide (TMAH) solution. Prior to the vertical
oxygen etch, the Ti layer was etched in the aforementioned PlasmaTherm Versaline ICP-RIE
with argon/chlorine (Ar/Cl2) for 1 minute with gas flows of 25 and 40 sccm respectively, pressure
of 8 milliTorr, bias and ICP powers of 250 W and 400 W respectively.

The automatic stage rotation during RIBAE improved the etch cross-section uniformity. Pre-
viously, with Faraday cage angled-etching, a lack of stage rotation during the etch would result in
asymmetric cross-sections [Fig. 2(b)]. This was only improved by performing multiple etches
of shorter durations, with the stage rotated manually after each etch was complete and the sample
was unloaded [Fig. 2(c)]. With automatic stage rotation during RIBAE, the cross-section was
guaranteed to be symmetric [Fig. 2(e)]. While the HSQ-Ti mask stack has advantages in terms



of smoothness, resolution and thickness, it suffered from high top-down and lateral erosion rates
[Fig. 2(d)], as well as excessive mask redeposition [Fig. 2(f)].

With RIBAE using the recipe with 200 V beam voltage, the HSQ-Ti mask stack has been used
to angle-etch racetrack resonators with optical Q’s of 286 000, [33] as well as photonic crystals
in visible wavelengths. [11, 13, 39] For waveguides, the mask needs to be sufficiently thick and
wide to withstand lateral and top-down erosion of the HSQ mask. For photonic crystals, there
is an added requirement for the mask to be thick enough to shadow the holes from being etched.
However, the maximum realizable aspect ratio of HSQ limits the range of thickness where
features can be reliably reproduced.

While visible-wavelength photonic crystals have been successfully fabricated using HSQ-
Ti mask stack and used to demonstrate memory-enhanced quantum communication, [12–14]
the same mask stack was unsuccessful in producing photonic crystals at telecommunication
wavelengths. Firstly, limitations in aspect ratios that can be achieved with HSQ imposes an upper
limit on its thickness, above which features cannot be faithfully reproduced with lithography.
Secondly, the larger widths of telecommunication-wavelength photonic crystals as compared to
their visible-wavelength counterparts means that a longer duration of RIBAE is needed to fully
suspend the photonic crystals. This leads to a greater extent of mask erosion as well as mask
redeposition, contributing to roughness in both outer edges of waveguides and inner sidewalls
of holes [Fig. 2(g)].

3.2. HSQ-Nb mask

To overcome the large extent of mask erosion arising from HSQ mask, we explored the use of
a metal mask for oxygen RIBAE, as many metals form a resistant oxide layer upon oxidation.
Metals such as chromium, [40] aluminum, [2, 41, 42] and niobium [5, 33] have previously been
used as metal masks for diamond etching. Here, we chose niobium (Nb) due to its high selectivity
and low erosion rate, as well as its ease of etching in Ar/Cl2 etch.

To fabricate diamond photonic devices with niobium masks, a ∼ 200nm layer niobium was
sputtered using a magnetron sputtering system with a 2-inch niobium target (AJA International)
onto cleaned diamond substrates, and HSQ was then spin-coated on top of niobium. Following
EBL and development, the mask pattern defined in HSQ is transferred into the niobium layer with
an anisotropic Ar/Cl2 etch, and then transferred into the diamond substrate using an anisotropic
oxygen etch for 10 mins. This was then followed by oxygen RIBAE to suspend the photonic
structures, and mask removal to remove HSQ and niobium. Although HSQ was not removed
prior to angled etching, it did not serve as the primary mask material here as it was eroded at a
faster rate compared to niobium during the oxygen RIBAE step [Fig. 3(a)(i)].

We first used the HSQ-Nb mask to etch cantilevers, using the recipe with 200 V beam voltage,
and observed their cross-section. This mask resulted in a well-defined triangular cross-section
without mask redeposition and roughness along the waveguide edges as compared to the HSQ-Ti
mask stack [Fig. 3(a)(ii), (iii)]. This was due to the lower mask erosion rate of niobium as
compared to HSQ during the oxygen RIBAE step, as well as the absence of the Ti layer that led
to micromasking. Using a stage tilt of ! = 45◦ resulted in a top apex angle of ∼ 53◦, with the
discrepancy arising from mask erosion that narrowed the width of the mask.

To demonstrate the effectiveness of the improved triangular cross-section, we fabricated ring
resonators with HSQ-Nb mask [Fig. 3(b)] and compared them to those fabricated using HSQ-Ti
mask. [33] After the RIBAE step, the diamond substrate with fabricated ring resonators was
cleaned first with a mixture of nitric acid, phosphoric acid, and HF in 1:1:1 ratio to remove HSQ
and Nb, followed by cleaning in piranha mixture, acetone, and methanol, before critical point
drying with carbon dioxide.

For ring resonators fabricated with HSQ-Nb mask stack, a total optical Q of 730 000 with an
intrinsic optical Q of 776 000 were measured [Fig. 3(c)], an improvement from the total optical
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Fig. 3. RIBAE of photonic structures using Nb mask. (a)(i) Scanning electron

microscope (SEM) image during RIBAE of the cantilever with Nb mask. (ii) SEM

image of a completely etched cantilever. (iii) Close-up view of the cross-section of the

cantilever, with a final etch angle close to 53◦. (b) SEM image of racetrack resonator

fabricated with Nb mask. (c) The optical transmission spectrum of racetrack resonator

shown in (b), with optical resonance at 1621.0 nm, total optical Q of 730 000, and

intrinsic optical Q of 776 000. (d) Process flow for templated Nb mask on diamond.

(i) Spin coating of PMMA, (ii) electron beam lithography and development of PMMA

template, (iii) sputtering of Nb into PMMA template, (iv) completed sputtering with

Nb fully planarized over PMMA template, (v) planarization of Nb with argon ion

beam at grazing incidence angle, (vi) final Nb mask on diamond. (e) SEM image

after removal of PMMA revealed Nb mask. (f) SEM image of photonic crystal after

angled etching with Nb mask. (g) The optical reflection spectrum of photonic crystal

fabricated with Nb mask, with optical resonance at 1566.2 nm, total optical Q of 11

100, and intrinsic optical Q of 39 700. Scale bars in (a), (b), (e), (f) represent 1 'm.

All SEM images were taken at a 60◦ tilt.



Q’s of 286 000 measured from similar ring resonators fabricated with HSQ-Ti mask stack, [33]
thus demonstrating that the improved smoothness of the triangular cross-section resulted in
lower optical scattering losses.

3.3. Nb mask via inversion of PMMA template (PMMA/Nb)

However, metal masks possess grain structure, which subsequently transfers into diamond as
sidewall roughness. To circumvent this, we devised an alternative patterning process through
mask inversion [Fig. 3(d)]. In this modified process, Poly(methyl methacrylate) (PMMA, 950
C4, MicroChem) was spun onto a cleaned diamond substrate. The thickness of PMMA set
the final thickness of the mask. The mask pattern was written in PMMA using EBL; due to
the positive tone of the resist, this resulted in trenches and pillars where waveguides and holes
were defined. After development with methyl iso-butyl ketone (MIBK) diluted in 1:3 ratio with
isopropyl alcohol (IPA) for 60 seconds, the template was completed. The template was then
inverted through sputtering of niobium such that the template is conformally covered, followed
by an etchback to remove excess niobium on top of the PMMA template.

To fully planarize the PMMA template through sputtering, the required material thickness
is equal to half the width of the widest feature if the deposition is conformal. In our photonic
crystal devices, this would correspond to the clamps of 3 'm width, which would require a 1.5
'm-thick layer of niobium to be sputtered. In the case of incomplete planarization, an etchback
that uses conventional top-down etching would etch niobium at the bottom of unplanarized
features, leading to an absence of mask in those regions. To avoid the need for a thick niobium
layer, we employed an argon ion beam at grazing incidence for the etchback process instead.
With the correct choice of ion beam incidence angle and thickness of the sputtered niobium layer,
unplanarized features can be preserved by virtue of its sidewall coating shadowing the argon ion
beam from reaching the bottom of the unplanarized region. The grazing-incidence argon ion
beam milling was performed in the same Intlvac Nanoquest tool used for oxygen RIBAE, with
the following parameters: argon flow 15 sccm, beam voltage 300 V, accelerator voltage 36 V,
beam current 100 mA, ICP power 110 W, stage angle 20◦.

After the milling step to remove excess niobium on top of PMMA, thereby leaving the
niobium mask surrounded by exposed PMMA, the PMMA was removed by immersion in
Remover PG (MicroChem) for 24 hours to complete the mask definition process [Fig. 3(e)].
Device fabrication then proceeded with top-down oxygen etch followed by oxygen RIBAE. The
niobium mask patterned in this way produced smooth sidewalls in the holes as inherited from the
smoothness of the PMMA template, which then translated to smooth sidewalls in diamond as
well after the anisotropic etch. However, after the oxygen angled RIBAE step, the holes became
roughened. The roughening of holes was due to insufficient mask thickness to shadow the holes
during the angled etching process [Fig. 3(f)].

In turn, the insufficient mask thickness resulted from physical limitations in the sputtering
process. This was because sputtering is not perfectly conformal; sharp convex corners at the top
of trenches see a greater flux of incoming adatoms as compared to concave corners at bottom of
trenches. Complete coating is possible for sufficiently low aspect ratios, given as the ratio of the
height of a trench to its width. Above a critical aspect ratio, the disparity in coating at top corners
of trenches compared to bottom corners would result in insufficient sidewall coating and voids
within the mask. A mask with voids and incomplete sidewall coating would be compromised
in its ability to withstand lateral erosion, especially over long durations of oxygen RIBAE for
telecommunication wavelength photonic crystals.

The optical reflection spectrum of a telecommunication photonic crystal, fabricated with
template-patterned Nb mask, is shown in Fig. 3(g). The telecommunication wavelength photonic
crystals fabricated with the modified niobium masking process and RIBAE were measured to
have lower intrinsic optical Q of 39 700, compared to 270 000 measured in telecommunication



photonic crystals fabricated with HSQ-Ti mask and Faraday cage angled etching. [35] Here,
intrinsic optical Q was compared instead of total optical Q to exclude variations in waveguide
coupling rates, as the two devices were measured via different means (reflection vs transmission
respectively). The degraded Q’s can be attributed to roughened holes arising from insufficient
Nb mask thickness and hole shadowing during oxygen RIBAE, even though the Nb mask gave
a better cross-section compared to HSQ-Ti mask in Faraday cage angled etching.

3.4. HSQ-alumina mask

The low measured optical Q’s of telecommunication wavelengthphotonic crystals usingPMMA/Nb
mask as compared to those achieved with HSQ-Ti mask (with Faraday cage angled etching) shows
that a thick mask is needed to shadow the photonic crystal holes from being etched and produce
high optical Q’s. However, it is difficult to deposit thick layers of commonly used hard mask ma-
terials without accumulating stress and/or without grain structure. A compromise was reached
by using a thick HSQ layer, but with a thin alumina underlayer instead of a metallic underlayer
as in the HSQ-Ti process [Fig. 4(a)]. An alumina layer approximately 1 nm thick was deposited
via atomic layer deposition (Cambridge NanoTech) after the diamond substrate cleaning step,
but prior to spin coating of 1 'm of HSQ. After EBL and development, a short Ar/Cl2 etch was
used to remove the alumina layer prior to top-down diamond etching.

We first fabricated cantilevers with the HSQ-alumina mask stack to demonstrate smooth
triangular cross-sections during and after the RIBAE process [Fig. 4(b), (c)], resembling that
from the single-stack PMMA/Nb process described earlier [Fig. 3(b)(ii)]. We used using the
recipe with a lower beam voltage of 150 V to achieve a lower erosion rate of HSQ. The amorphous
nature of the alumina underlayer means that there is no grain structure that results in diamond
sidewall roughness via top-down diamond etching, while the thinness of the layer eliminates
mask redeposition. Therefore, the combined HSQ-alumina mask stack can be considered an
effective single-stack mask [Fig. 4(b)].

The cross-section of a cantilever fabricated using the HSQ-alumina mask has a top apex
angle of ∼ 58◦, [Fig. 4(c)] which is 13◦ off of the stage tilt of ! = 45◦ used. The greater
discrepancy for the HSQ-alumina mask using RIBAE at 150 V beam voltage, compared to
8◦ for HSQ-Nb mask and 200 V beam voltage, signifies that lateral mask erosion is much
more pronounced without a metal underlayer. This is in spite of a lower beam voltage recipe
used with the intention of reducing physical sputtering of HSQ by oxygen ions. However, the
vertical mask erosion is reduced at lower beam voltages, as shown by the successful etch of
telecommunication wavelength OMCs using HSQ-alumina mask, compared to unsuccessful
etch using HSQ-Ti mask.

Telecommunication-wavelength photonic crystals were then fabricated with HSQ-alumina
mask with the process outlined above, using the same design that was used for the PMMA/Nb
process, but with the waveguides widened to account for mask erosion during RIBAE. The
waveguides were deliberately made wider at the lithography step to account for lateral erosion
during RIBAE, given the significant HSQ erosion rate observed when HSQ-based masks were
used. A scanning electron micrograph (SEM) of a completed device is shown in Fig. 4(d). For a
photonic crystal fabricated with the HSQ-alumina mask, optical reflection spectroscopy revealed
an intrinsic optical Q of 250 000. This is nearly an order of magnitude improvement from the
Q of 39 700 measured from photonic crystals fabricated with PMMA/Nb mask, showing that a
sufficiently thick mask is needed for high optical Q’s.

4. Conclusion

The lack of high-quality diamond materials grown through heteroepitaxial methods has moti-
vated the development of nanofabrication techniques in bulk substrates. The angled-etching
technique is studied in particular here owing to the success of fabricating quantum photonic
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etched cantilever, prior to HSQ mask removal. (c) SEM image of the same cantilever

in (b), after HSQ mask removal, with a final etch angle close to 58◦. (d) SEM

image of photonic crystal after angled etching with HSQ-alumina mask. (e) The

optical reflection spectrum of photonic crystal fabricated with HSQ-alumina mask,

with optical resonance at 1520.0 nm, total optical Q of 35 300, and intrinsic optical Q

of 250 000. Scale bars in (b) – (d) represent 1 'm. All SEM images were taken at 60◦

tilt.



devices in the visible wavelength range using the reactive ion beam angled etching (RIBAE)
technique. To extend this success of angled-etching to devices in the telecommunication wave-
length range, various mask choices were evaluated based on their ability to produce smooth
triangular cross-sections reliably. The cross-sections should have no roughness due to mask
redeposition or insufficient shadowing during the angled etching process.

This work outlines the requirements for a good mask stack: it should be sufficiently thick, have
high selectivity, good aspect ratio tolerance, high resolution and smooth sidewalls. However, we
found that it was not possible to satisfy all four criteria simultaneously through measurements
of optical Q’s of photonic devices fabricated using various masks. We summarize the measured
optical Q’s in Table 1. For racetrack resonators, using HSQ-Nb mask improved optical Q’s
by a factor of 2. For photonic crystals, a compromise was reached with HSQ-alumina mask,
which was sufficiently thick and gave smooth sidewalls but had a lower selectivity compared to
Nb, and worse resolution and aspect ratio tolerance compared to PMMA. Despite not satisfying
all four criteria, telecommunication wavelength photonic crystals fabricated with RIBAE using
HSQ-alumina mask gave the highest intrinsic optical Q’s compared to the other mask choices,
and this Q was comparable to those previously demonstrated with Faraday cage angled etching.
Therefore, we conclude that with the right choice of mask, RIBAE can produce the same quality
devices as Faraday cage approach, with added advantages of producing these devices over areas
that are orders of magnitude larger, and with much better uniformity and yield.

Table 1. Table comparing optical Q-factors between different devices fabricated in

diamond via angled etching, using different masks.

Device type Etching method Mask material(s) Wavelength (nm) Optical Q

Racetrack resonator Faraday cage HSQ-Ti 1648.7 151 000 (total, [25])

Racetrack resonator RIBAE HSQ-Ti ∼1600 286 000 (total, [33])

Racetrack resonator RIBAE HSQ-Nb 1621.0 730 000 (total, this work)

Photonic crystal Faraday cage HSQ-Ti 1529.2 270 000 (intrinsic, [35])

Photonic crystal RIBAE HSQ-Ti nil nil

Photonic crystal RIBAE PMMA/Nb 1566.2 39 700 (intrinsic, this work)

Photonic crystal RIBAE HSQ-alumina 1520.0 250 000 (intrinsic, this work)

While diamond is specifically studied for its relevance to quantum photonics, the same
considerations for choice of mask can also be applied to bulk materials where no heteroepitaxial
or thin-film-on-insulator platforms are available. However, limitations on mask thicknesses
prevent devices larger than telecommunication wavelength scale to be fabricated. Devices wider
than those intended for telecommunication wavelengths would take a longer RIBAE etch to
be fully suspended, which in turn require a thicker mask to account for lateral and top-down
mask erosion. However, thick deposited materials (> 1 'm) typically exhibit large stresses,
which can lead to delamination from substrates. In addition, pattern transfer into a thick
layer requires a first mask layer with sufficient selectivity and high resolution, especially for
devices with small features such as photonic crystals. These considerations would preclude
common masking methods involving pattern transfer or lift-off, and would require fine-tuning of
deposition processes to minimize stresses, or innovative deposition techniques that can provide
a thick mask material with low accumulated stress, high resolution, and large aspect ratios.
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