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Abstract
The fluctuation-dissipation theorem relates the thermal noise spectrum of a conductor to its linear
response properties, with the ohmic resistance arising from the electron scattering being the most
notable linear response property. But the linear response also includes the collective inertial
acceleration of electrons, which should in principle influence the thermal noise spectrum as well.
In practice, this effect would be largely masked by the Planck quantization for traditional
conductors with short electron scattering times. But recent advances in nanotechnology have
enabled the fabrication of conductors with greatly increased electron scattering times, with which
the collective inertial effect can critically affect the thermal noise spectrum. In this paper we
highlight this collective inertial effect—that is, the plasmonic effect—on the thermal noise
spectrum under the framework of semiclassical electron dynamics, from both fundamental
microscopic and practical modeling points of view. In graphene, where non-zero collective
inertia arises from zero single-electron effective mass and where both electron and hole bands
exist together, the thermal noise spectrum shows rich temperature and frequency dependencies,
unseen in traditional conductors.

Keywords: plasmonics, noise, graphene, fluctuation dissipation theorem, linear response, kinetic
inductance, plasmonic mass

(Some figures may appear in colour only in the online journal)

1. Introduction

The phenomenon of Johnson–Nyquist noise [1, 2] is not only
of great importance for its own sake, but it also offers a
prominent example of the fluctuation-dissipation relation
[3, 4]. The fluctuation-dissipation theorem dictates that the
power spectral density of the Johnson–Nyquist current noise
in a conductor is given by [3, 4]

( )
S k T Y

k T

k T
( ) 4 { ( )}
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ω
ω
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where Y ( )ω is the complex admittance that represents the
conductor’s linear response. While the primary factor that
affects Y ( )ω is the ohmic resistance R arising from the
electron scattering, Y ( )ω must be a frequency-dependent,
complex quantity, even in the most intrinsic case considering

only the pure dynamical effects of electrons (i.e., even after
excluding parasitic reactive elements). This is because the
current response to an applied voltage entails not only the
electron scattering but also the collective inertial acceleration
of electrons, which manifests as a kinetic inductance LK [5].
For a conductor with an arbitrary single-electron energy
dispersion k( )ϵ , LK can be obtained by calculating the ac
conductivity or dielectric function within the linear response
framework [6–8]. In particular, the semi-classical approxima-
tion yields [6, 8]
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for a conductor with length l along the x-axis—along which
Y ( )ω and S ( )I ω are measured—and cross-sectional width or
area, W, depending on conductor dimension d = 2 or 3.
g accounts for degeneracy (e.g., due to spin and valley), and
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f k T( ) [1 exp{( ) ( )}]B
1ϵ ϵ μ= + − − is the Fermi–Dirac

distribution (μ: chemical potential). Then

( )Y R L( ) i , (3)K
1ω ω= + −

with LK and R in series. The corresponding circuit model is in
figure 1(a). At low frequencies, equation (1) reduces to the
familiar k T R4 B . In the classical regime ( 0→ ), equation (1)
reduces to

S k T Y( ) 4 { ( )}. (4)I B Rω ω=

Integrating equation (4) over the frequency yields
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In other words, in the classical regime, the current noise
follows the equipartition theorem, storing a mean thermal
energy of k T 2B into the collective degree of freedom
associated with LK.

So, in principle the collective inertial effect LK influences
the thermal noise spectrum. But little attention has been paid
to this effect, as it is not too conspicuous—if not negligible—
in most traditional conductors. To see this, note that the
Planck factor in equation (1) rolls off with frequency with a
characteristic cutoff k Tq Bω ≡  , while Y{ ( )}R ω rolls off

with a characteristic cutoff R Lp K
1ω τ≡ = − (τ: electron

momentum relaxation time), where R LK
1τ= − is from the

semiclassical calculation of the ac conductivity [6]. In tradi-
tional conductors, qω tends to be smaller than, or at best

comparable to, pω across a broad temperature range, render-
ing the LK effect masked in the spectrum. But in recently
advanced nanoscale or low-dimensional conductors such as
graphene, τ is large enough that p qω ω≪ is possible [8, 9], in
which case the LK effect will dominate the spectrum roll-off.

The purpose of this paper is to highlight this collective
inertial effect on the thermal noise spectrum from both fun-
damental microscopic and practical modeling points of view.
In section 2, we will delineate the effect from a microscopic
standpoint. The collective excitation of electrons, macro-
scopically represented by LK, exhibits a well-defined collec-
tive mass [5, 8, 10]. Since its acceleration is essential for
propagating the plasmonic wave [5, 8, 11–15], we will call
this collective mass, normalized to the number of electrons, as
the plasmonic mass mp. We will elucidate that the correct
mass to use in describing the microscopic dynamics of ther-
mal fluctuation is not the single-electron effective mass m*
but the plasmonic mass mp. In fact, this essential link between
mp (or LK) and thermal noise is subsumed by, and thus a
natural consequence of, the linear response theory; i.e., both
the fluctuation-dissipation theorem and mp are attained from
the same linear response framework applied to the collection
of electrons [3, 4]. In section 3, we will elaborate on how the
plasmonic roll-off can take over the Planck (quantum) roll-off
in the noise spectrum for large enough τ. Section 4 will use
graphene as an example conductor and develop its thermal
noise model, considering the plasmonic mass effect from both
electron and hole bands that co-exist.

2. Collective mode and noise: microscopic view

2.1. Plasmonic mass

We first detail the concept of plasmonic mass [8] that is
paramount in this paper. If we collectively displace each
electron in a conductor—e.g., by applying an electric field
and setting a current—by δ in the kx direction, the total energy
of the electron system is increased. The increase amount is
the collective kinetic energy EK corresponding to the current;
it is given by
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where the integration is over the conduction band—up to
section 3, we focus on a conductor with a single conduction
band—and k̂x is a unit vector along the kx axis. For a small
enough δ, which is practically always the case, we can write
equation (6) in powers of δ
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Figure 1. (a) Circuit model for the Johnson–Nyquist noise, including
the kinetic inductance effect. (b) Current noise power spectral
density for various τ values at T = 300 K.
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If we assume inversion symmetry k k( ) ( )ϵ ϵ= − , met by
many lattice types, the first term vanishes. But more broadly,
since the first term is proportional to the integration of the
group velocity, v kk( ) (1 )( )x xϵ= ∂ ∂ , weighted by the
Fermi–Dirac distribution, if it did not vanish, there would
be a spontaneous current; we do not consider such a case
here, and set the first term to zero. Now, as δ and the
collective crystal momentum P are related by P nWl δ= × 
—here, n gfk k(d (2 ) ) ( ( ))d d∫ π ϵ= is electron number den-
sity per area or volume (d = 2 or 3)— equation (7) becomes
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So E PK
2 2δ∝ ∝ regardless of k( )ϵ . This quadratic relation

is expected, as EK is minimum at 0δ = (whether the electrons
move to the right or left, EK increases). As E PK

2∝ is
Newtonian, the collective inertia is
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Collective mass per electron—plasmonic mass—is then
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which is the harmonic mean of the effective mass tensor
component kM k[ ( )]xx x

2 1 2 2ϵ= ∂ ∂− . For later use, we re-
express equation (10) after integration by parts:
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We now make a few key observations about mp.
(1) Plasmonic mass versus effective mass: For a general

k( )ϵ , mp differs from the single-electron effective mass,

m kk* [1 ( ) ]x
2 2 2 1ϵ= × ∂ ∂ − . mp is k-independent, while m*

is generally k-dependent. mp generally varies with T and n,
for it arises from the collective excitation, while m* does not.
In the special case of kk( ) 2ϵ ∝ (k k≡ ∣ ∣), m* is a well-
defined, k-independent constant, and m m* p= , as seen from

equation (10) in connection with n gfk k(d (2 ) ) ( ( ))d d∫ π ϵ= .
(2) Plasmonic mass versus cyclotron mass: Consider

a 2D conductor at T = 0 with an isotropic single-electron
dispersion, kk( ) ( )ϵ ϵ= . Integrations in equation (10)
and n gfk k(d 4 ) ( ( ))2 2∫ π ϵ= for kk F∣ ∣ ⩽ yield

m T k k( 0) (d d )k kp
2

F Fϵ= = = (kF: Fermi wavenumber). On
the other hand, the cyclotron mass for electrons that orbit
around the Fermi surface enclosing the k-space area of A ( )ϵ
is m A(2 )[(d d ) ( )]c

2
Fπ ϵ ϵ= ϵ ϵ= [6, 16], which, for isotropic

2D conductors, is
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Thus, for a 2D isotropic conductor, m T m( 0)p c= = . This
also applies to three-dimensional (3D) conductors with

kk( ) ( )ϵ ϵ= .
(3) Graphene: While the single-electron energy dispersion

k( )ϵ for graphene is that of massless Dirac Fermions, m 0p ≠ .
As graphene is isotropic with v kk( ) Fϵ =  , m T( 0)p = =
m vc F F

2ϵ= , like the rest mass in relativity ( Fϵ and vF are
Fermi energy and velocity). mc was measured from Shubni-
kov–de Haas oscillations [17, 18]. mp was hinted at from the
measured plasmonic dispersion [19, 20] and was recently
directly measured by accelerating it with a microwave field [8].

(4) Plasmonic mass versus kinetic inductance: The cur-
rent due to the collective shift of electrons is an integral over
the perturbed group velocity, v k k( ˆ )x xδ+ :
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proportionality as L E I2K K
2= . Using equations (8) and

(14), we have:
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This is identical to equation (2) obtained from the
semiclassical calculation of the ac conductivity [6]. Finally,
from equations (10) and (15), we obtain

L
l

W

m

ne
. (16)K

p

2
=

This establishes the link between macroscopic LK and
microscopic mp. Equation (16) is the generalization of the
more familiar expression for LK derived from the Drude
model for the special case of kk( ) 2ϵ ∝ and m m*p = .

2.2. From macroscopic to microscopic picture

In the introduction, we established the macroscopic energy
equipartition in the classical regime, equation (5); the noise
current I stores a thermal energy of k T 2B into LK. We now
convert this macroscopic energy equipartition to a micro-
scopic form applicable to the thermal fluctuation velocity vfl

—along the x-axis where noise is measured—for an indivi-
dual electron. As each electron contributes a fluctuating cur-
rent of v e lfl , I v l nWle2

fl
2 2 2〈 〉 = 〈 〉 × . By combining this

with equations (5) and (16), we obtain

v
k T

m
, (17)fl

2 B

p
〈 〉 =

which holds for arbitrary k( )ϵ . While the thermal motions of
electrons are not apparently collective, the fluctuating velocity
stores a thermal energy of k T 2B into the plasmonic mass mp

—as opposed to the single-electron effective mass m*—with
the plasmonic motion being an appropriate degree of freedom
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to apply the energy equipartition at the microscopic level. We
emphasize that the energy equipartition does not apply
generally to m*, i.e., v k T m*fl

2
B≠ , in general. While

v k T m*fl
2

B= is valid when kk( ) 2ϵ ∝ and m m* p= , it
faces a problem for a general, non-parabolic k( )ϵ , where m*
is dependent on k. A more dramatic example where
v k T m*fl

2
B= fails is the case of graphene, where

individual electrons act as massless Dirac Fermions. In sum,
the proper mass to use in describing thermal noise dynamics
is not m* but mp. In the time-domain description, the
Langevin equation [3] should use mp, not m*.

2.3. From microscopic to macroscopic picture

The foregoing discussion started by integrating the power
spectral density of equation (4) into the macroscopic equi-
partition of equation (5) and subsequently obtained the
microscopic equipartition of equation (17). We may reverse
this chain of processes, and derive first the microscopic
equipartition by enumerating and averaging the effect of each
individual electron, based on the Fermi–Dirac statistics.

To this end, for a k-state, we define a unitless random
variable sk, which assumes a value of 1 with probability
f k( ( ))ϵ and a value of 0 with probability f k1 ( ( ))ϵ− . That
is, s 1k = means that the k-state is occupied by an electron,
while s 0k = signifies the emptiness of the k-state. Then, the
sum of the x-component group velocities of all electrons in
the conductor can be written as

v v sk( ) , (18)x

k

ksum ∑=

which itself is a random variable. Its variance, which
represents the fluctuation in the velocity sum, must be related
to the above-discussed vfl

2〈 〉 by:

nWl v v v . (19)fl
2
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2
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We evaluate each term on the right-hand side by using
equation (18). The first term is

v v s

v s v v s s

v f v v f f

k

k k k

k k k

( )

( ) ( ) ( )

( ) ( ) ( ) ,

x

x x x

x x x

k

k

k
k

k k

k k

k
k

k k
k k

sum
2

2

2 2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑

∑ ∑

∑ ∑

〈 〉 =

= 〈 〉 + ′ 〈 〉

= + ′
≠ ′

′

≠ ′
′

where fk is a shorthand notation for f k( ( ))ϵ , and we have
used s sk k〈 〉 =′ s sk k〈 〉〈 〉′ for k k≠ ′, s f1 · 0 ·k k〈 〉 = +

f f(1 )k k− = , and s f f f1 · 0 · (1 )k k k k
2 2 2〈 〉 = + − = . Simi-

larly,
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By plugging these two results into equation (19), we obtain

( )v
nWl

v f fk
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( ) 1 . (20)x

k
k kfl

2 2∑〈 〉 = −

In the special case where there is inversion symmetry in
the single-electron energy dispersion, i.e., k k( ) ( )ϵ ϵ= − and
v vk k( ) ( )x x= − − , equation (20) has a particularly simple
interpretation. In this case, if a k-state and a k− -state are both
occupied, the group velocities of the two occupant electrons
cancel each other due to the symmetry, not contributing to the
fluctuation. Thus to evaluate vfl

2〈 〉 in this special case, one has
to enumerate only those situations where the k-state is
occupied while the k− -state is not. The corresponding prob-
ability is then ( ) ( )f f f f1 1k k k k− = −− , and hence
equation (20). However, in attaining equation (20), we have
not imposed any condition on k( )ϵ —such as the inversion
symmetry— and, hence, equation (20) is generally valid.

Converting equation (20) into an integral and using
f f k T fk k( ( ))[1 ( ( ))] ( )Bϵ ϵ ϵ− = − ∂ ∂ , we obtain
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where we have taken the last step by using equation (11). As
seen, the microscopic equipartition with mp resurfaces but this
time via the ab initio calculation, which reaffirms the critical
relevance of mp to noise dynamics.

Equation (16) with I v l nWle2
fl
2 2 2〈 〉 = 〈 〉 × transforms

this microscopic equipartition into the macroscopic equi-
partition, equation (5). We can subsequently work out the
noise power spectral density: As I I t(0) ( )〈 〉 I e t2= 〈 〉 τ−∣ ∣ [3],

S ( )I ω t4 d
0

∫=
∞

I I t(0) ( )〈 〉 t Icos ( ) 4 2ω τ= 〈 〉 (1 );2 2ω τ+
by using equation (5) and L Rkτ = , we obtain the noise
power spectral density of equation (4).

The power spectral density derivation above tacitly
assumed frequency-independent τ and R. But even when τ
and R are frequency-dependent, we can still derive the power
spectral density from the microscopic equipartition
v k T mfl

2
B p〈 〉 = by using the generalized Langevin equation

of Kubo’s linear response theory [3], where (and importantly)
mp is to be used instead of m*.

3. High-frequency behavior of SI ωð Þ

With Y R i L( ) ( )K
1ω ω= + − , equation (1) is written out as

( )
S k T

R

R L

k T

k T
( ) 4 · ·

exp 1
. (22)I B 2 2

K
2

B

B
ω

ω
ω
ω

=
+ −




The second factor is Y{ ( )}R ω , and the third Planck factor is
due to the radiation quantization. With frequency, the Planck
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factor starts rolling off at around the ‘quantum cutoff,’
k Tq Bω =  ; at T 300 K= , (2 ) 6.25qω π ∼ THz. On the

other hand, Y{ ( )}R ω starts rolling off at around the
‘plasmonic cutoff,’ R L 1p Kω τ= = . In most typical

conductors with τ between 10 14∼ − s and 10 16∼ − s, pω tends
to be larger than, or, at best, comparable to, qω . So the noise
spectrum roll-off due to LK (or mp) is typically masked (or, at
best, blurred) by that due to the Planck factor.

By contrast, recent advances in nanoscale or low-
dimensional conductors such as graphene have greatly
increased τ so that p qω ω≪ is possible [8, 9], with which
Y ( )ω becomes substantially inductive at GHz to THz fre-
quencies and the spectrum roll-off due to LK kicks in before
the Planck factor suppresses the spectrum. To show this
concretely, figure 1(b) plots equation (22)—noise spectrum
versus frequency—for various values of τ. For 0τ = (black
curve), the noise spectrum starts decreasing at around qω ; this
is the noise suppression due purely to the Planck factor. As τ
is increased and pω becomes increasingly smaller than qω , the
high-frequency suppression of the noise spectrum becomes
increasingly dominated by the LK effect; compare the blue,
green, and red curves—τ increasing in that order—against the
black curve. For such large τ values, the LK effect on thermal
noise is critical to model in. This effect may also be exploited
to infer the optical (plasmonic) properties from the noise
spectrum.

To further highlight the critical role of LK in the noise
spectrum for large τ, we compute I 2〈 〉 by integrating
equation (22) across the entire frequency:

I
k T

L

a

a x

x x2 d

e 1
(23)

x
2 B

k 0 2 2∫π
= ×

+ −

∞

where a p qω ω≡ = R k TL( )B K = k T( )B τ and
x k T( )Bω≡  . This generalizes equation (5) by including
the Planck quantization. I 2〈 〉 versus a is in figure 2. For
a → ∞ ( 0τ → ; p qω ω≫ ), the Planck quantization effect

takes precedence over the LK effect, and I k T L2
B K〈 〉 ≪ . In

fact, in this case, equation (23) is reduced to
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I

k T

L a

x x k T
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2 d

e 1 3
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x
2 B
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B
2

∫π
π
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−
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∞



where LK disappears. In contrast, for a 0→ (τ → ∞;
p qω ω≪ ), we have

I
k T

L

a

a x
x

k T

L

2 1
d , (25)2 B

K 0 2 2

B

K
∫π

= ×
+

=
∞

recovering the macroscopic equipartition, equation (5); i.e., in
this case, the spectrum roll-off is entirely governed by LK,
with the Planck quantization effect masked.

4. Thermal noise model for graphene

Graphene is an ideal system to apply the foregoing formalism
to and to derive a thermal noise model from for a few reasons.
First, in high-quality graphene, 10 12τ ∼ − s [8, 9], corre-
sponding to the green curve of figure 1(b), and, hence, the
effect of LK (or mp) dominates over the Planck quantization
effect in the noise spectrum. Second, in graphene, individual
electrons act as massless Dirac Fermions, yet m 0p ≠ , and,
hence, mp varies with n and T, enriching the noise behaviors

(in contrast, in conductors with kk( ) 2ϵ ∝ and m m* 0p = ≠ ,
mp is independent of n and T). Third, since in graphene both
conduction and valence bands contribute to electronic con-
duction, LK (or mp) from both bands should be considered,
which further complicates the noise behaviors.

First consider a fictitious graphene with only a conduc-
tion band, held at a constant charge density by a gate bias.
With only the electron band, the constant charge density
means a constant electron number density n. Suppose

T( 0) 0.1Fμ ϵ= = = eV. With g = 4, n fk k(d ) ( ( ))2 2∫ π ϵ=

T, 0F∣ =μ ϵ= = v( )F
2 2

F
2ϵ π . As n is T-independent in our sce-

nario,

n f
v

k
k

d
( ( ))

1
, (26)T

2

2 ,
F
2

2
F
2∫

π
ϵ

π
ϵ

= ∣ =μ


from which T( )μ is determined (figure 3(a), blue curve).
Using this T( )μ in equation (10), we evaluate mp. As n is
constant, L mK p∝ (equation (16)). Figure 3(b) shows LK and
mp as functions of T; both increase with T. This contrasts the
case of a conventional conductor with parabolic dispersion,
for which mp (and LK with the fixed n with the gate biasing)
is independent of T.

A real graphene sample where electron and hole bands
co-exist exhibits even richer behaviors. We again assume a
constant charge density held by a gate bias and suppose

T( 0) 0.1Fμ ϵ= = = eV. At T = 0, graphene is electron-
doped. As T rises, both the electron number density ne and
hole number density nh—subscript ‘e’ and ‘h’ signify electron
and hole bands—can vary (this contrasts the fictitious case
where the electron number density is fixed) while the total

Figure 2. I 2 normalized to k T LB K versus a p qω ω≡ .
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charge density en ene h− + is fixed. Formally:

n T n T
v

( , ) ( , )
1

, (27)e h
F
2

2
F
2

μ μ
π

ϵ
− =



where

n T f
k

k( , )
d

( ( )) , (28)Te
e

2

2 ,∫μ
π

ϵ= ∣μ

n T f
k

k( , )
d

1 ( ( )) . (29)Th
h

2

2 ,
⎡⎣ ⎤⎦∫μ

π
ϵ= − ∣μ

This leads to a markedly different behavior for T( )μ , with
0μ → for T → ∞ (figure 3(a), red curve), as compared to the

case of the fictitious graphene (figure 3(a), blue curve). Once
T( )μ is evaluated, n T( )e and n T( )h follow from

equations (28) and (29). Also with T( )μ , we can evaluate
mp,e and mp,e,

m
n

g k
f

k
k

d

(2 )
( ( )) , (30)

d

d
x

Tp,e

2
e

e

2

2 ,

1⎡
⎣⎢

⎤
⎦⎥∫

π
ϵ ϵ= ∂

∂
∣μ

−

m
n

g k
f

k
k

d

(2 )
1 ( ( )) , (31)

d

d
x

Tp,h

2
h

h

2

2 ,

1⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥∫

π
ϵ ϵ= ∂

∂
− ∣μ

−

which are variations of equation (10). Finally, using the
results above in equation (16), we can compute the kinetic
inductance LK of each band separately.

Figures 3(c) and (d) plot the resulting mp and LK in each
band as functions of T. They again exhibit conspicuous T
dependency, just like in the fictitious case. However, the T-
dependency of LK,e with a maximum value (figure 3(d))
markedly differs from the monotonically increasing T-
dependency of LK,e in the fictitious case (figure 3(b)).
L m nK,e p,e e∼ (equation (16)) exhibits the maximum value
in the real graphene due to competing effects of mp,e and ne.
For small T, n n constanth e≪ ≈ , so LK,e increases with T as
mp,e increases with T. This is just like in the fictitious case. In
contrast, for large T, ne grows as T2 (as does nh to keep the
overall charge density constant), which is faster than the
growth of mp,e with T (compare figure 3(a) inset and
figure 3(c)); therefore, L m nK,e p,e e∼ decreases for large T.

The circuit noise model of the real graphene is shown in
figure 4(a), where the LK effects from both bands is explicitly
modeled in. The total power spectral density of the current

Figure 3. (a) T( )μ for fictitious graphene (blue curve) and real
graphene (red curve), shown with electronic band structures.

0.1Fϵ = eV for both. Inset: ne for both systems. (b). mp, LK versus T

for fictitious graphene. m0 is intrinsic electron mass. (c) mp in each

band versus T for real graphene. (d) LK in each band versus T for
real graphene. L LK,e K,h∣∣ is also shown.

Figure 4. (a) Circuit noise model for graphene. (b) For e hτ τ= .
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noise is given by

( )

S k T
R

R L

R

R L

k T

k T

( ) 4

exp 1
(32)

I B
e

e
2 2

K,e
2

h

h
2 2

K,h
2

B

B

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ω

ω ω
ω
ω

=
+

+
+

×
−




assuming no correlation between the electron band noise and
hole band noise. Due to the dominance of LK,e and LK,h in the
spectrum roll-off over the Planck quantization effect (in high-
quality graphene) and due also to the rich T-dependencies of
LK,e and LK,h, the noise power spectral density in graphene
exhibits very different characteristics from that in traditional
conductors in terms of both frequency and temperature
dependency. Whether the electron and hole band noise are
correlated or not is an open question; such correlation, if
extant and conspicuous, would further enrich the noise
spectrum. Also note that we have ignored inter-band
transitions, because they are minimal at our frequencies of
interest (up to THz) for this relatively highly doped sample.

If τ is the same for both bands, i.e., if L R L RK,e e K,h h= ,
equation (32) is reduced to

( )( )

( )

S k T
R R

R R L L

k T

k T

( ) 4

exp 1
(33)

I B
e h

e h
2 2

K,e K,h
2

B

B

ω
ω

ω
ω

=
∣∣

∣∣ + ∣∣

×
−




where R R( )e h
1∣∣ =− R Re

1
h

1+− − and
L L L L( )K,e K,h

1
K,e

1
K,h

1∣∣ = +− − − . That is, the circuit model of
figure 4(a) can be reduced to figure 4(b), with the resistors
from both bands and the kinetic inductors from both bands
each connected in parallel, with R Re h∣∣ and L LK,e K,h∣∣ in
series serving as overall resistor and inductor. For the T-
dependency of L LK,e K,h∣∣ , see figure 3(d).

In general, L R L RK,e e K,h h≠ , but even in such a case,
L LK,e K,h∣∣ considered right above is still of great relevance to

the noise dynamics. This is because I 2〈 〉 =
I I k T L k T Le

2
h
2

B K,e B K,h〈 〉 + 〈 〉 = + , or,

I
k T

L L
. (34)2 B

K,e K,h
〈 〉 =

∣∣

That is, the total integrated current noise fluctuation follows
the energy equipartition, with the mean thermal energy of
k T 2B stored onto the macroscopic degree of freedom
associated with L LK,e K,h∣∣ . Since this parallel inductance

exhibits the T dependency, as shown in figure 3(d), I 2〈 〉 in
graphene is no longer proportional to T, which is the case for
conductors with quadratic single-electron energy dispersion
held with a gate bias.

Two additional points on the graphene thermal noise
model of figure 4(a) may merit mentioning.

Parasitic effects: Since in graphene the magnetic induc-
tance is two or more orders of magnitude smaller than the
kinetic inductance [8], it was ignored in the noise model of
figure 4(a). The model does not explicitly show the shunt
parasitic capacitance (consisting of classical and quantum

capacitance in series in general) to ground—the ground can
be provided by a proximate conducting gate, or is defined as
the reference potential at an infinitely far point in the absence
of gate [8]—because the shunt capacitance does not affect the
expression of the intrinsic noise current.

Lumped versus distributed model: figure 4(a) is a lumped
circuit model. In the case where the graphene strip is long
enough to be comparable to, or larger than, the plasmonic
wavelength, the graphene strip can be modeled as a plasmonic
transmission line consisting of an infinite number of dis-
tributed infinitesimal segments, with each segment appearing
like figure 4(a) with the aforementioned shunt capacitance (to
ground) added; here the inductance, resistance, capacitance,
and current noise of each segment has to be scaled to its
infinitesimal length [8]. The noise spectrum at either terminal
of this transmission line then can be evaluated from the noise
sources distributed along the lossy plasmonic transmission
line [21].

5. Conclusion

Recent advances in low-dimensional materials have blurred
the traditional boundary between photonics and electronics. A
prominent example is plasmonics in 2D conductors (e.g.,
graphene); while plasmonic excitation occurs traditionally in
the realm of photonics, in 2D materials it can occur at THz
and GHz frequencies, reaching into the electronics realm.

This paper offered another example that highlights such a
merger of photonics–electronics boundaries. Concretely, we
investigated how the plasmonic response (traditionally stu-
died in photonics) can significantly alter the Johnson–Nyquist
thermal noise dynamics (traditionally studied in electronics).
The intrinsic connection between plasmonics and Johnson–
Nyquist noise is in fact a natural consequence of the linear
response theory: that is, both plasmonic properties and the
fluctuation-dissipation relation (of which the Johnson–
Nyquist noise is a prominent example) are obtained from the
same linear response framework applied to the collection of
electrons. But in traditional conductors with short electron
scattering times, the Planck quantization effect has masked
the plasmonic effect in the noise spectrum. On the other hand,
in 2D materials like graphene, where the electron scattering
time has been greatly elongated, the plasmonic effect can take
precedence over the Planck quantization effect, significantly
altering the thermal noise spectrum. We demonstrated that
this effect is not only of great importance for practical noise
modeling, but it also provides an opportunity to delineate
some fundamental concepts, in particular, the critical role that
the plasmonic mass (as opposed to the single-electron effec-
tive mass) plays in thermal fluctuation dynamics of electrons.

To emphasize the practical relevance of this study, the
last section of this paper was dedicated to developing the
thermal noise model for graphene, where individual electrons
act as massless Dirac Fermions, while the plasmonic mass is
non-zero. We demonstrated that in graphene, due to the
dominance of the plasmonic mass effect over the Planck
quantization effect, the temperature dependence of the
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plasmonic mass, and the emergence of the plasmonic mass
from both electron and hole bands that co-exist, the thermal
noise spectrum shows rich temperature and frequency
dependency, unprecedented in traditional conductors.
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