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Abstract

Electronic transport properties of semiconductors with small band gaps are often not well
described by semiclassical methods, because of missing interband interactions between carriers
in the valence and conduction bands. We develop a new first-principles formalism based on the
Wigner transform to generalize semiclassical transport models to include quantum effects. We
apply the method to Bi2Se3, showing that bulk transport properties at low doping concentrations
are dominated by the Zener effect, a mechanism in which carriers transfer charge by tunnelling
across the band gap. Surprisingly, Zener tunneling occurs also between band subvalleys of energy
much larger than the bandgap.

Recent years have seen the emergence of topological insulators (TI) as a new important class of
materials, thanks to their variety of interesting physical properties and promising applications, such
as low-power electronics and robust quantum bits [1, 2, 3, 4, 5]. Most studies focus on the surface
states that result from the spin-orbit induced inversion of the bulk band gap, so that TIs behave
as insulating crystals in the bulk, and as metals on surfaces. For applications in electronics, it is
important to have a thorough understanding of both surface and bulk transport properties of TIs.
In fact, several TIs are characterized by a bulk quasiparticle band gap that is much smaller than
that of silicon. It is important to note that small band gap systems may behave differently than
a silicon-based device. For example, small band gap graphene devices may display a phenomenon
called Zener (or Klein) tunneling [6, 7], in which the tunneling of carriers through the band gap can
substantially contribute to the electrical conductivity.

The de-facto tool of choice for first-principles simulation studies of electronic transport properties
is the Boltzmann Transport Equation (BTE), which provides estimates of transport properties
with remarkable agreement with experimental measurements (e.g. [8, 9, 10, 11, 12, 13]). However,
this semiclassical approach is not always sufficient to model electronic transport properties: Zener
tunneling, for example, is not captured. Some studies have used the equation of motion for the
density matrix as an alternative description that holds for small band gap systems [14], however
making difficult to understand the link with semiclassical models. Here instead we aim to extend the
range of applicability of the BTE to complex materials, including narrow band-gap semiconductors
such as Bi2Se3, with the benefit of retaining the capability to interpret the results in a simple fashion.

In this work, starting from the Moyal bracket, we derive an equation of motion for electrons,
termed the Wigner transport equation (WTE). This equation allows the computation of the full set of
electronic transport coefficients, and in particular the electrical conductivity and Seebeck coefficient,
and reduces to the BTE in the limit where the Wigner function is diagonal. We implement this
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equation with fully ab-initio parameters and apply the formalism to the topological insulator Bi2Se3.
We show that at small doping concentrations, the estimates of bulk electronic transport properties
deviate significantly from semiclassical estimates, due to the presence of Zener tunneling, which is
instead captured by the WTE.

We start by considering the ground state Hamiltonian H0 of a crystal, which we assume to be
an independent-particle Hamiltonian with eigenvalues εb(k) and Bloch states ψkb(x), where x is
the position, k the wavevector and b the band index (for simplicity, we omit the spin index). The
ground-state is perturbed by a constant electric-field E which couples with the carriers’ charge e and
by the electron-phonon interaction Hel−ph, so that the total Hamiltonian is H = H0 +ex ·E+Hel−ph.
To derive an equation of motion for such a system, we use the single-particle Wigner function f of
the system [15], defined as the Wigner transform of the density matrix ρ as

fbb′(x,k, t) =
∑
∆k

ei∆k·xρbb′
(
k +

∆k

2
,k − ∆k

2
; t
)
, (1)

where t is the time. We build the Wigner function through a transformation of the density matrix
ρbb′(k,k

′) in the reciprocal space representation. Such Wigner transform consists in a rotation of
variables k,k′ → k+k′

2 ,k′ − k combined with a Fourier transform on one variable. The Wigner
function operates in a phase-space representation, which is especially useful to draw connections
between quantum and classical mechanics.

The evolution of the Wigner function [16, 17] is found through a Wigner transform of the equation
of motion of the density matrix, and has been shown to be

∂fbb′(x,k, t)

∂t
=−

{{
f(x,k, t), H(x,k)

}}
bb′

(2)

:=
i

h̄

(
f(x,k, t) ? H(x,k)

−H(x,k) ? f(x,k, t)
)
bb′
, (3)

where {{f,H}} is the Moyal bracket (the quantum mechanical extension of the Poisson bracket) and
the Moyal product ? is defined as:

f ? H = f(x,k) exp

(
i

2

( ~∂

∂x
·
~∂

∂k
−

~∂

∂k
·
~∂

∂x

))
H(x,k) , (4)

where H(x,k) is the Wigner transform of the Hamiltonian, and the arrows indicate that the derivative
operator is acting to the left/right operators. To ensure that such derivatives exist, we choose a
particular wavefunction gauge, as discussed in the supplementary material.

We now simplify the Hamiltonian supposing that the electron-phonon interaction is weak and
evaluate the Moyal bracket for the single-particle part of the Hamiltonian; the electron-phonon
interaction is added later as a perturbation. Since we are interested in macroscopic properties, we can
make the assumption that only slow spatial variations of the Wigner function are relevant. Therefore,
we approximate the Moyal product in Taylor series to the lowest orders of h̄ and, as detailed in
the supplementary material, we find an equation of motion which we term the Wigner Transport
Equation (WTE), that is

∂fbb′(x,k, t)

∂t
+
i

h̄

[
E(k)+d(k)·E, f(x,k, t)

]
bb′

+
1

2

{
v(k), ·∂f(x,k, t)

∂x

}
bb′
−eE·∂fbb

′(x,k, t)

∂k
= −∂fbb

′(x,k, t)

∂t

∣∣∣∣
coll

.

(5)

2



where {, } is an anticommutator, Ebb′(k) = δbb′εkb is a matrix of electronic energies, dbb′(k) =
(1 − δbb′) 〈kb | ex |kb′〉 is a matrix of electric dipoles between two Bloch states (typically used to
describe optical excitations), and vbb′(k) is the velocity operator. The electron-phonon scattering
operator ∂fbb′ (x,k,t)

∂t

∣∣
coll

is added as a perturbation to the WTE and is built, as detailed in the
appendix, using scattering rates from the Fermi Golden rule [18, 19, 20, 21, 22].

The WTE must be solved to obtain the single-particle Wigner distribution function. As a first
comment, we note that the BTE is recovered as a limiting case of the WTE, when the off-diagonal
terms b 6= b′ are set to zero. This corresponds physically to a situation when different bands do not
couple via Zener tunneling. This can happen, for example, when the energy difference is too large: if
this is the case, neither thermal excitation nor dipole interaction provide sufficient energy to allow
for the vertical transition of one particle from one band to another. Therefore, the most interesting
terms to discuss in the WTE are the off-diagonal terms, which introduce the possibility of additional
electronic transitions, or couplings, between different electronic states at a given wavevector k. If
we neglect the space derivative term, the WTE reduces to the quantum master equation studied in
other works [23, 24, 25, 14, 26]; as discussed later, this additional term allows the computation of
the Seebeck coefficient. Additionally, we note that the electronic WTE is conceptually similar to a
formalism developed for phonon transport in Ref. [18], although here we use a simplified derivation
and include the effect of external forces (the electric field).

To better understand the off-diagonal terms in Eq. 5, it is illustrative to estimate the electrical
conductivity σ. The WTE can be solved to estimate σ with a technique similar to the one used
to solve the BTE, and is detailed in the supplementary material. Once the Wigner distribution is
known, transport properties are readily obtained. For example, the charge current density is

J =
egs

2V Nk

∑
kb

{
v(k), f(k)

}
bb′
, (6)

where gs counts the spin degeneracy, V is the crystal unit cell volume and Nk counts the number of
wavevectors. As detailed in the appendix, one can compute the electronic heat current as well, and
thus the complete set of transport coefficients. The diagonal terms b = b′ correspond to the estimates
of electrical conductivity tensor within the BTE formalism σBTEij , where i, j are cartesian labels.
Notably, the semiclassical result is corrected by an additional term as σij = σBTEij + ∆σij with

∆σij =
2gse

2

V Nk

∑
kbb′

b 6=b′

f̄b′(k)− f̄b(k)

εb′(k)− εb(k)
× (7)

×
vibb′(k)vj,∗b′b(k)(Γb(k) + Γb′(k))

4(εb′(k)− εb(k))2 + (Γb(k) + Γb′(k))2
,

where Γb(k) is the electronic linewidth (here, due to electron-phonon interaction) and f̄b(k) the
Fermi–Dirac occupation number. We can now make a few key remarks. First, the correction ∆σ is
positive (note that f̄b(k) is a monotonic function of εb(k) ), and therefore the WTE will always adjust
the semiclassical prediction of conductivity to higher values. Second, the expression of the electrical
conductivity better illustrates the role of the off-diagonal components of the Wigner distribution
function. Whenever the energy difference between an electron and a hole is comparable to their
linewidth, the two carriers interact. The strength of such interaction is determined by the velocity
matrix element vbb′(k), i.e. the matrix element for optical transitions. As a result, the system allows
an additional transport mechanism, known as Zener tunneling, in which electrons propagate by
tunneling through the band gap.
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Figure 1: Electronic band structure and density of states (DOS) of Bi2Se3 near the Fermi energy,
set at the center of the band gap. The bulk crystal is characterized by a small gap, opened by the
spin-orbit coupling. We also note from the DOS that subvalleys of valence and conduction bands are
approximately 1.8 eV apart in energy.

All quantities appearing in the WTE are available from first-principles codes and we can therefore
apply this formalism using fully ab-initio parameters. In particular, we use Quantum ESPRESSO
[27, 28] for the calculation of electronic and phonon properties [29], Wannier90 [30] to interpolate
electronic energies and a mixed Wannier and linear interpolation of the electron-phonon matrix
elements [12] (see Supplementary material for details).

We now apply the formalism to study the intrinsic lattice-limited electronic transport of bulk
Bi2Se3. In Fig. 1 we report the band structure [31, 32] and the density of states (DOS) for this
narrow-gap semiconductor. We estimate a quasiparticle gap of 0.2 eV, in agreement with experimental
estimates [33]. It is worth noting that the DOS increases away from the Fermi level (set at 0 eV
at the middle of the band gap) and flattens at energies of approximately -0.8eV and 1.0eV for the
valence and conduction bands, respectively, indicating that the subvalleys are separated by an energy
of approximately 1.8 eV.

In Fig. 2a, we estimate the electron-phonon limited electrical conductivity σ of Bi2Se3 in the
in-plane direction as a function of temperature for different values of n-type doping concentrations
(results for p-type doping are reported in the supplementary material). In the supplementary material,
we briefly discuss a comparison with available experimental results which, for the purpose of the
present study, show a good qualitative agreement. In the figure, dashed lines are the semiclassical
estimates σBTE , while solid lines the estimates using the WTE. For the highest doping values, when
the chemical potential shifts into the conduction band, the conductivity has the typical metallic-like
behavior of decreasing with temperature. Under these conditions, BTE and WTE do not differ
significantly, except at larger temperatures.

For smaller doping concentrations the chemical potential lies in the band gap and we thus observe
a semiconducting behavior of σ increasing with temperature. The semiclassical model predicts a
smaller conductivity than the WTE estimate. In fact, when only a few carriers from the bottom of
the conduction band are excited, the average carriers’ group velocity is small, due to the quadratic
nature of the band minimum. Therefore, the semiclassical contribution to electrical conductivity
tends to be rather small. The WTE corrects this picture, including the Zener tunneling effect [7].
As carriers from valence and conduction band are close in energy, they can interact and contribute
to the electrical transport through the tunneling effect, as discussed above. For small dopings, the
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Figure 2: Computational estimates of the in-plane electrical conductivity (panel a), Seebeck coefficient
(panel b), and Lorenz number ratio (panel c, see text for description) of Bi2Se3 as a function of
temperature, for different values of electron doping concentration. Solid lines are estimated using
the Wigner transport equation, while dotted lines are semiclassical estimates obtained solving the
Boltzmann transport equation. For small doping concentrations, the interaction between electrons
and holes significantly affect the estimates of transport coefficients.
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WTE correction is significant, and can be much larger than the BTE conductivity value. For the
smallest value of doping reported (1016cm−3), this correction is largest at lower temperatures. The
doping of 1018cm−3 is an intermediate case, with metallic behavior at low temperatures (and thus
smaller WTE correction) and semiconducting (with larger WTE correction) at higher temperatures
as the chemical potential moves from the band gap into the conduction band. We can thus conclude
that a substantial portion of electrical current at low doping is carried through the Zener tunneling
included in the WTE formalism: the current is not only caused by the carriers traveling at a finite
group velocity, but also by carriers’ tunneling between single-particle Bloch states.

In Fig. 2b. we report the Seebeck coefficient S, solid/dashed lines are WTE/BTE estimates.
The negative values indicate that a majority of carriers are electrons, although, in a small band gap
system, deviations from this behavior can occur. In a parabolic band model treated semiclassically,
S is proportional to the logarithmic derivative of the density of states [34]. Therefore, at low
temperatures, one expects the Seebeck coefficient to increase as the doping concentration is decreased.
This phenomenon is crucial to optimize the thermoelectric efficiency, where the goal is to maximize
the power factor σS2. However, within the WTE, S is not anymore simply related to the density
of states, as additional terms in the transport equations appear (as detailed in the supplementary
information). As a result, the large increase of the Seebeck coefficient expected by a semiclassical
model at low doping is strongly suppressed by the WTE, and S becomes comparable to its values at
high doping. We thus conclude that the tunneling effects captured by the WTE can alter considerably
the predictions of thermoelectric properties in narrow-gap semiconductors.

We now examine the relationship of electrical conductivity σ and open-circuit electronic thermal
conductivity κel. The Wiedemann-Franz (WF) law defines the Lorenz number L = κel

σT , which in the
ideal metallic limit is a constant L0 = 2.44 · 10−8 WΩK−2. Knowledge of L is necessary to decouple
the electronic contribution κel and the lattice contribution κph from measurements of the total κ. In
Fig. 2c, we plot the computed ratio L

L0
for several doping concentrations and temperatures, using

both BTE and WTE. At high doping the system has metallic character, and both predictions closely
follow the WF law. In the case of small doping, in the bipolar regime, the semiclassical BTE predicts
large deviations from the WF law, as has been discussed previously [13, 35, 36, 37]. Remarkably, in
the WTE solution the Lorenz numbers are much closer to the expected range for semiconductors,
indicating that quantum transport effects included in the WTE strongly suppress bipolar deviations
and work towards restoring the validity of the WF law.

In Fig. 3a, we analyze the contributions to the BTE electrical conductivity as a function of the
carriers’ energy at doping concentration of 1018 cm−3, and temperature of 700 K. This histogram is
built such that the area under the curve integrates to the total electrical conductivity. Within the
semiclassical relaxation time approximation, the quantity plotted is an energy-resolved histogram of
2e2

V Nk

∂f̄b(k)
∂ε v2

bb(k) 1
Γb(k) , i.e. the contribution of a single mode to the BTE electrical conductivity. As

expected, the dominant contributions to electrical conductivity come from carriers whose energy is
close to the chemical potential (set at 0 eV). The contributions of other carriers decay exponentially
as their energy gets further from the chemical potential.

The WTE correction ∆σ cannot be resolved in terms of a single carrier’s energy, since it involves
the tunneling between two states at different energies. Therefore, in Fig. 3b, we plot the contributions
to the electrical conductivity as a function of two interacting carriers energies. On the diagonal, we
find again the BTE-like terms shown in Fig. 3a. In addition, we can see important off-diagonal
contributions to the electrical conductivity that are not present in the BTE and are introduced
with the WTE. In particular, there are two peaks of contributions to electrical conductivity, that
couple electrons of energy 1.0 eV with holes at -0.8 eV. These two values correspond to the average
energies of the valence and conduction bands, when the DOS reaches the corresponding maximum
values. Therefore, in contrast to the typical intuition of the Zener tunneling, we find that the most
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significant coupling between carriers takes place far from the chemical potential, with carriers of
energy much larger than the thermal energy. For this material, the dipole interaction between carriers
in subvalleys of the valence and conduction is thus particularly strong, allowing for high-energy
carriers to contribute to transport. As a result, we speculate that Zener tunneling may take place also
in semiconductors with a wide gap and contribute significantly to electrical conductivity, provided
that the inter-band dipole interaction is sufficiently strong, for instance in materials with high optical
absorption character.

In conclusion, we have shown that the Moyal equation of motion for the Wigner function leads to
a straightforward extension of the Boltzmann transport equation, which takes into account additional
quantum transport effects such as Zener tunneling. With this new Wigner transport equation
formalism it is possible to compute the full set of Onsager transport coefficients for thermal and
electrical transport from first principles, starting with density functional perturbation theory. We
implemented this equation and solved it for the topological insulator Bi2Se3. We have shown that,
while at high doping concentrations the Boltzmann equation provides a fairly accurate description of
transport, it fails at low doping concentrations. At low dopings, the Zener tunneling effect contributes
significantly to the electronic transport, modifying both electrical conductivity and Seebeck coefficient.
Lastly, we have shown that Zener tunneling does not just take place across the states closest to the
band gap, but can involve states that are significantly further apart in energy, provided that the
dipole interaction is sufficiently strong. As a result, we have extended the range of applicability of
ab-initio transport simulations to materials where quantum tunneling effects couple carriers, and a
semiclassical description is no longer adequate.

Supplementary material

0.1 Equation of motion of the Wigner function
In this section, we detail the derivation of the Wigner transport equation discussed in the main text.

We start from the single-particle Hamiltonian H of an electron in a crystal in presence of an
electric field, that is

H = H0 + ex ·E = H0 + d ·E , (8)

where H0 is the Hamiltonian of a crystal in its ground state, e the electronic charge, x the position
operator, E the electric field and d = ex the dipole operator. We further make the hypothesis that
the electric field can be added as a perturbation, so that the eigenvectors |ψkb〉 of H are approximately
the eigenvectors of H0 as well (with Bloch quantum numbers k for the wavevector and b for the
band index). The eigenvalues of H0 are denoted as εb(k). We also stress that the single-particle
approximation is consistent with the numerical implementation using parameters computed from
density-functional theory.

Before proceeding, it is important to choose a wavefunction gauge such that the derivative ∂|ψkb〉
∂k

exists and is continuous. To this aim, we recall that the maximally localized Wannier functions are
written as

|Rn〉 =
V

(2π)3

∫
dke−ik·R

∑
b

Uk,bn |ψkb〉 =
V

(2π)3

∫
dke−ik·R |ψ̃kn〉 , (9)

where R labels a Bravais lattice site and Uk,mn is a matrix fixing the wavefunction gauge. The matrix
Uk,bn is chosen as the one that maximally localizes Wannier functions [38], which has also the benefit
of making |ψ̃kn〉 a smooth wavefunction across different wavevectors (otherwise, wavefunctions at
different wavevectors assume random phases).

7



[h]

Figure 3: Panel a: histogram of contributions to semiclassical electrical conductivity as a function
of the carrier energy, for Bi2Se3 at 700K and n-doping at 1018 cm−3. Panel b, 2D histogram of
contributions to the electrical conductivity for the same system as estimates with the Wigner transport
equation against the energy of two coupled carriers. Off-diagonal contributions represent electrical
conductivity arising from the coupling between electrons and holes.
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Next, we briefly recall the definition of the Wigner transform. Given an operator in the real-space
(position) representation A(x,x′), we can transform it to the phase-space representation through the
Wigner transform W [·], defined as

W [A]nn′(x,k) =

∫
dx′e−i2k·x

′
Ann′(x + x′,x− x′) . (10)

Similarly, if we start from an operator in the momentum representation, we can transform it into the
phase-space representation as

W [A]nn′(x,k) =

∫
dk′ei2k

′·xAnn′(k + k′,k − k′) . (11)

We now want to describe the equation of motion of the system under the Hamiltonian of Eq.
8. We can build the density matrix of the system using the basis of wavefunctions in the Wannier
gauge |ψ̃kn〉 introduced above. We thus represent the state of the system using the single-particle
density matrix operator ρ, whose matrix elements are ρnn′(k,k′; t) = Tr{ρ̂(t)c†k′,n′ck,n}, where c†k,n,
and ck,n are creation/annihilation operators of an electronic state |ψ̃kn〉. As described in Ref. [18],
one may use the equation of motion of the density matrix, and Wigner transform it to derive an
equation of motion for the system. Here, we derive a simplified equation of motion for the state
of the system using the Wigner function of the crystal [15], which is defined through the Wigner
transform of the density matrix as

Wnn′(x,k, t) =
∑
∆k

ei2∆k·xρnn′

(
k + ∆k,k −∆k; t

)
, (12)

where we used the rotation of coordinates k,k′ → k+k′

2 ,∆k = k′ − k.
Note that that the position x appearing in the Wigner transform is, to be precise, a Bravais

lattice vector and thus a discrete variable. However, when studying transport properties, we are
only interested in the macroscopic behavior of the system. Under this macroscopic limit, we only
study the changes of x on a length-scale much larger than the lattice parameter, so that x can be
approximated as a continuum variable. As a result, W admits a continuous derivative with respect
to x and, thanks to the gauge choice on the wavefunction, W is also differentiable with respect to k.

As demonstrated by Moyal [16, 17], the Wigner function obeys the following equation of motion:

∂Wnn′(x,k, t)

∂t
= −

{{
W (x,k, t), H(x,k)

}}
nn′ =

i

h̄

(
W (x,k, t)?H(x,k)−H(x,k)?W (x,k, t)

)
nn′ ,

(13)
where {{f, g}} indicates the Moyal bracket between two operators f and g, and the Moyal product ?
is defined as:

f ? g = f(x,k) exp

(
i

2

( ~∂

∂x
·
~∂

∂k
−

~∂

∂k
·
~∂

∂x

))
g(x,k) , (14)

where the left/right arrow indicates that the derivative operator acts on the operator to the left/right.
The equation of motion forW is the phase-space analogous of the Liouville-Von Neumann equation

of motion for the density matrix, and therefore has a complexity comparable to that of Schroedinger’s
equation.

Now, we can further simplify this equation of motion by making the hypothesis that both H and
W are slowly varying functions of x and k. We then expand the exponential appearing in the Moyal

9



product in Taylor series and approximate the equation of motion as

∂Wnn′(x,k, t)

∂t
≈i
(
W (x,k, t)H(x,k)−H(x,k)W (x,k, t)

)
nn′

− 1

2

(
W (x,k, t)

( ~∂

∂x
·
~∂

∂k
−

~∂

∂k
·
~∂

∂x

)
H(x,k)−H(x,k)

( ~∂

∂x
·
~∂

∂k
−

~∂

∂k
·
~∂

∂x

)
W (x,k, t)

)
nn′

(15)

=− i
[
H(x,k),W (x,k, t)

]
nn′
− 1

2

{∂H(x,k)

∂k
, ·∂W (x,k, t)

∂x

}
nn′

+
1

2

{∂H(x,k)

∂x
, ·∂W (x,k, t)

∂k

}
nn′

.

(16)

Note that, if H and W commute (for example, if the two are diagonal in the band index n), this
equation reduces to the Poisson bracket, i.e. the time evolution of a classical Hamiltonian.

The equation of motion is almost in the final form reported in the main text. However, it is still
expressed in terms of the basis set |ψ̃kn〉. While convenient for the derivation, it is more practical to
work with an equation in terms of the Bloch index b, rather than the Wannier index n (the Wannier
function basis set doesn’t in general diagonalize the Bloch Hamiltonian). Therefore, we rotate results
in the |ψkb〉 basis set and write W and H as:

Hbb′(x,k) =
∑
nn′

U†bn(k)Hnn′(x,k)Ub′n′(k) , (17)

and
fbb′(x,k) =

∑
nn′

U†bn(k)Wnn′(x,k)Ub′n′(k) . (18)

The equation of motion can thus be written as:

∂fbb′(x,k, t)

∂t
= −i

[
H(x,k), f(x,k, t)

]
bb′
−1

2

{∂H(x,k)

∂k
, ·∂f(x,k, t)

∂x

}
bb′

+
1

2

{∂H(x,k)

∂x
, ·∂f(x,k, t)

∂k

}
bb′
.

(19)
We now want to manipulate the matrix elements of the Hamiltonian entering the equation of

motion for the Wigner function. First, we note that the Wigner transform of the Hamiltonian at
Eq. 8 is Eq. 8 itself, because H0 (a Bloch Hamiltonian) is diagonal in k and the coupling with the
electric-field is diagonal in x. The matrix elements of such Hamiltonian are

〈ψkb |H(x,k) |ψkb′〉 = εb(k)δbb′ + dbb′(k) ·E = [E(k) + D(k) ·E]bb′ , (20)

where we introduced two matrices E(k) and D(k) containing the single-particle energies εb(k) and
dipoles dbb′(k). The dipole operator requires some care, since the position operator is not well-defined
in a periodic system. The off-diagonal terms b 6= b′ satisfy:

dk,bb′ = 〈ψkb | er |ψkb′〉 = e

〈
ψkb

∣∣ [H0, r]
∣∣ψkb′

〉
εb(k)− εb′(k)

= −ie vbb′(k)

εb(k)− εb′(k)
, for b 6= b′ , (21)

where vbb′(k) is the velocity operator. The diagonal terms dbb(k) are ill-defined [39]. Luckily, these
terms appear only inside a commutator, so that the diagonal terms don’t contribute. We thus set
dbb(k) = 0 without altering results.

The derivatives of the Hamiltonian are readily computed as〈
ψkb

∣∣∣∣ ∂H(x,k)

∂x

∣∣∣∣ψkb′

〉
= eEδbb′ , (22)
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and 〈
ψkb

∣∣∣∣ ∂H(x,k)

∂k

∣∣∣∣ψkb′

〉
= vbb′(k) . (23)

Combining all this terms together, the equation of motion for the Wigner function fbb′(x,k, t) is

∂fbb′(x,k, t)

∂t
+ i
[
E(k) +D(k) ·E, f(x,k, t)

]
bb′

+
1

2

{
v(k), ·∂f(x,k, t)

∂x

}
bb′
− eE · ∂fbb

′(x,k, t)

∂k
= 0 .

(24)
This is the equation of motion for the Hamiltonian H0 + ex ·E, which, however, doesn’t take into

account for the effect of electronic collisions, in particular electron-phonon scattering. This effect is
added as a perturbation, and we define the electron-phonon collision matrix as [18, 19, 20, 21, 22]:

∂fbb′(x,k, t)

∂t

∣∣∣∣
coll

= (1− δbb′)
Γb(k) + Γb′(k)

2
fbb′(x,k, t) + δbb′

1

V

∑
k′b′

Akb,k′b′fb′b′(x,k
′, t) . (25)

Here, the diagonal terms of f are modified by the scattering matrix A, which is built as the electron-
phonon collision matrix of the Boltzmann transport equation. The off-diagonal terms instead are built
[40, 18, 41], from the electron-phonon linewidths Γb(k) = Akb,kb. The electron-phonon scattering
matrix is computed as [34]:

Akb,k′b′ =δkk′δbb′
2π

Nq

∑
mνq

|gmnν(k, q)|2
[(

1− f̄m(k + q) + n̄ν(q)
)
δ
(
εn(k)− εm(k + q)− ων(q)

)
+
(
f̄m(k + q) + n̄ν(q)

)
δ
(
εn(k)− εm(k + q) + ων(q)

)]
+

2π

Nq

∑
mνq

|gmnν(k, q)|2
[
f̄n(k)

(
1− f̄m(k + q)

)
n̄ν(q)δ

(
εn(k)− εm(k + q) + ων(q)

)
+ f̄m(k + q)

(
1− f̄n(k)

)
n̄ν(q)δ

(
εn(k)− εm(k + q)− ων(q)

)]
, (26)

where ων(q) is the phonon frequency at wavevector q and branch index ν, n̄ν(q) is the Bose–Einstein
distribution function, and |gmnν(k, q)|2 is the strength of the electron-phonon interaction. All these
quantities can be computed using density-functional perturbation theory.

Finally, the WTE becomes

∂fbb′(x,k, t)

∂t
+i
[
E(k)+D(k)·E, f(x,k, t)

]
bb′

+
1

2

{
v(k), ·∂f(x,k, t)

∂x

}
bb′
−eE·∂fbb

′(x,k, t)

∂k
= −∂fbb

′(x,k, t)

∂t

∣∣∣∣
coll

.

(27)

0.2 Solution of the Wigner transport equation and transport properties
In this section, we show how to solve the Wigner transport equation for a bulk system at the
steady-state.

First, we study the response of the system to an electric field. In this case the Wigner function
simplifies considerably, since it doesn’t depend on time or space, and we can thus simply indicate
it as fbb′(k). Once computed fbb′(k), we will show in the next section how to evaluate transport
coefficients.

For small deviations from equilibrium, we linearize the Wigner distribution function as

fbb′(k) = f̄b(k)δbb′ + fEbb′(k) ·E , (28)
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where f̄ is the Fermi–Dirac distribution, and fE is the unknown quantity to be found from the WTE.
Note that fE is a vector to be found for every direction in which the electric field is applied.

We split the solution of the WTE in two parts, diagonal (b = b′) and off-diagonal (b 6= b′)
contributions. The diagonal components of the WTE are

eE · ∂fbb(k)

∂k
=
∑
k′b′

Akb,k′b′fb′b′(k
′) , (29)

which is equivalent to the BTE problem. The equation can thus be solved using standard techniques
developed for the BTE (see e.g. Ref. [42]). We verified that exact solutions of the BTE don’t modify
results significantly, and therefore we adopt the relaxation time approximation, and approximate the
diagonal WTE as

eE · ∂fbb(k)

∂k
= Γb(k)fbb(k) . (30)

Using the linearized expression for the Wigner function (and neglecting terms quadratic in E), the
equation is readily solved by

fEbb(k) =
e

Γb(k)

∂f̄b(k)

∂k
. (31)

The off-diagonal terms evolve according to

i

h̄

[
E(k) + D(k) ·E, f(k)

]
bb′
− eE · ∂fbb

′(k)

∂k
= −Γb(k) + Γb′(k)

2
fbb′(k) . (32)

Using the linearized expression, we obtain:

i
(
εb(k)− εb′(k)

)
fEbb′(k) + i

(
f̄b′(k)− f̄b(k)

)
dbb′(k) = −Γb(k) + Γb′(k)

2
fEbb′(k) . (33)

The equation is readily solved finding

fEbb′(k) =
f̄b(k)− f̄b′(k)

εb(k)− εb′(k)

2evbb′(k)

2i
(
εb(k)− εb′(k)

)
+
(
Γb(k) + Γb′(k)

) . (34)

Similarly, we can solve the WTE for the response to a thermal gradient, similarly to what discussed
in Ref. [18]. We can now set the electric field to zero and linearize the Wigner function as:

fbb′(k) = f̄b(k)δbb′ + fTbb′(k) ·∇T . (35)

The diagonal components of the WTE are then

v(k)
∂f̄b(k)

∂T
= −

∑
k′b′

Akb,k′b′f
T
b′b′(k

′) , (36)

which can be solved in the relaxation time approximation as discussed above for the electrical
conductivity. The off-diagonal components are given by

i
(
εb(k)− εb′(k)

)
fTbb′(k) +

1

2

(
∂f̄b′(k)

∂T
+
∂f̄b(k)

∂T

)
vbb′(k) = −Γb(k) + Γb′(k)

2
fTbb′(k) , (37)

which can again be solved trivially in terms of fTbb′(k).
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0.3 Transport coefficients
Having computed the Wigner function from the WTE, the expectation value of an operator A can
be computed in the phase-space representation as

〈A(t)〉 =
gs
V Nk

∑
kbb′

∫
fbb′(x,k, t)Ab′b(k)dx , (38)

where the factor gs = 2 takes into account for the spin-degeneracy (we are only considering non-
magnetic systems), V is the volume of the crystal unit cell and Nk is a normalization for the number
of wavevectors. We can apply this formula to estimate the current of a steady-state homogeneous
system, i.e. when fbb′(x,k, t) doesn’t depend on space and time. The charge current density J can
be computed as:

J =
egs
V Nk

∑
kbb′

fbb′(k)vb′b(k) =
egs

2V Nk

∑
kb

{
v(k), f(k)

}
bb′
, (39)

where we used an anticommutator to symmetrize results. The electrical conductivity easily follows,
since J = σE.

More precisely, we can define the Onsager transport coefficients as:

J = LEEE + LET∇T , (40)
Q = LTEE + LTT∇T , (41)

where Q is the heat flux, and the response coefficients can be computed as:

LijEE =
egs
V Nk

∑
kb

1

2

{
vi(k), fEj (k)

}
bb
, (42)

LijET =
egs
V Nk

∑
kb

1

2

{
vi(k), fTj (k)

}
bb
, (43)

LijTE =
gs
V Nk

∑
kb

(
εb(k)− µ

)1

2

{
vi(k), fEj (k)

}
bb
, (44)

LijTT =
gs
V Nk

∑
kb

(
εb(k)− µ

)1

2

{
vi(k), fTj (k)

}
bb
. (45)

As customary in transport theory [34], we recognize the electrical conductivity as σ = LEE , the
Seebeck coefficient as S = −L−1

EELET and the thermal conductivity as k = LTT − LTEL−1
EELET .

The expression for the electrical conductivity is readily computed. In fact, we can write the
electrical conductivity as

σij = σBTE,ij + ∆σij , (46)

where the first term takes into account for the diagonal (BTE-like) components of the WTE and
the second one for the off-diagonal ones. Substituting the solution of the WTE in the definition of
electrical conductivity, we find that the off-diagonal contribution is

∆σij =
egs

2V Nk

∑
kbb′,b 6=b′

(
vibb′(k)f

Ej

b′b (k) + f
Ej

bb′ (k)vib′b(k)
)

(47)

=
2gse

2

V Nk

∑
kbb′,b 6=b′

vibb′(k)vj,∗b′b(k)
f̄b′(k)− f̄b(k)

εb′(k)− εb(k)

Γb(k) + Γb′(k)

4
(
εb′(k)− εb(k)

)2
+ (Γb(k) + Γb′(k))2

. (48)

13



200 400 600 800 1000
Temperature (K)

0

100

200

300

S
ee

be
ck

 c
oe

ffi
ci

en
t (

µ
V

/K
)

200 400 600 800 1000
Temperature (K)

10
3

10
4

10
5

10
6

10
7

E
le

ct
ric

al
 c

on
du

ct
iv

ity
 (

S
/m

)

p=10
16

cm
-3

p=10
18

cm
-3

p=10
20

cm
-3

p=10
22

cm
-3

BT
E

W
TE

a

b

p=10
16

cm
-3

p=10
18

cm
-3

p=10
20

cm
-3

p=10
22

cm
-3

BT
E

W
TE

Figure 4: Computational estimates of the electrical conductivity (panel a) and Seebeck coefficient
(panel b) of Bi2Se3 as a function of temperature, for different values of hole doping concentration.
Solid lines are estimated using the Wigner transport equation, while dotted lines are semiclassical
estimates obtained solving the Boltzmann transport equation. The hole doping case is qualitatively
symmetric to the electron doping one discussed in the main text.

Note that ∆σij is a positive quantity and therefore always increases the estimate of conductivity
with respect to the BTE (since Γk,b > 0 and f̄ is a decreasing monotonic function of ε) The
diagonal contribution to the electrical conductivity is readily computed within the relaxation time
approximation, and it can be shown to be

σBTE,ij =
gs
V Nk

∑
kb

evibb(k)f
Ej

bb (k) ≈ gse
2

V Nk

∑
kb

∂f̄b(k)

∂ε
vibb(k)vjbb(k)

1

Γb(k)
. (49)

0.4 Supplementary transport properties of Bi2Se3
In Fig. 4, we plot electrical conductivity and Seebeck coefficient for positive doping concentrations.
Qualitatively, the data behave symmetrically to what discussed in the main text in the case of
negatively-charged carriers concentrations.

In Fig. 5 we compare our model to available experimental data for bulk electrical conductivity.
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At high doping concentrations, our results accurately reproduce the experimental measurement.
At lower doping concentrations, the discrepancy between our simulations and experimental results
increases, although qualitative trends appear still reproduced. It must be noted that there are several
factors that might introduce discrepancies between experimental and simulation results. To mention
some, the dependence of doping concentration on temperature is unclear and requires effort both in
terms of modeling, as well as detailed temperature-dependent measurements of the Hall effect. Our
simulations ignore electron-defect scattering, which may play a role especially at low temperatures.
Finally, both experimental and theoretical values are affected by errors which may be hard to quantify
(e.g. the dependence of computational results on the exchange-correlation functional chosen for
the density functional theory calculation). Nevertheless, we emphasize that the qualitative trends
discussed in the main text are robust and are not significantly altered by these considerations.
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Figure 5: Computational estimates of the in-plane electrical conductivity of Bi2Se3 as a function
of temperature, for different values of electron doping concentration using the Wigner transport
equation (solid lines). We contrast these results against the experimental in-plane conductivity of
single-crystals at negative doping concentrations of 3 × 1019cm−3 [43] (a), 7 × 1017cm−3 [44] (b),
4.4× 1016cm−3 and 1.1× 1017cm−3 [45] (c).

0.5 Methods
We use density functional theory as implemented in the plane-wave software suite Quantum-
ESPRESSO [27, 28]. To compute the ground state, we use ultrasoft pseudopotentials from the
GBRV library [46], with the PBEsol functional. We use an energy cutoff of 80 Ry, and integrate the
Brillouin zone with a 8× 8× 8 mesh of k-points. We build the trigonal unit cell using experimental
estimates of the crystal structure [47], i.e. with a lattice parameter of 9.839 Å, and an angle α such
that cosα = 0.91068. The Wannier functions are computed using p orbitals on both Bi and Se atoms
as initial guesses.

Phonon properties, and the electron-phonon matrix elements are computed with density-functional
perturbation theory [29] on a coarse grid of 4× 4× 4 q-points. Electron-phonon matrix elements
are subsequently interpolated on a finer grid of 39 × 39 × 39 Brillouin zone wavevectors using a
mixed Wannier and linear interpolation [12], while electronic energies and velocities are interpolated
using Wannier90 [30]. Transport properties have been implemented in a custom-made software.
The Dirac-delta ensuring energy conservation during an electron-phonon scattering event has been
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approximated using an adaptive-smearing scheme [48]. Transport properties have been converged
with respect to the k-points mesh used to integrate the Brillouin zone.
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