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Electronic transport in narrow gap semiconductors is characterized by spontaneous vertical transitions
between carriers in the valence and conduction bands, a phenomenon also known as Zener tunneling.
However, this effect is not captured by existing models based on the Boltzmann transport equation. In
this work, we propose a new fully first principles model for electronic transport using the Wigner dis-
tribution function and implement it to solve the equations of motion for electrons. The formalism
generalizes the Boltzmann equation to materials with strong interband coupling and include transport
contributions from off-diagonal components of the charge current operator. We illustrate the method
with a study of Bi,Ses, showing that interband tunneling dominates the electron transport dynamics at
experimentally relevant small doping concentrations, a behavior that is likely shared with other semi-
conductors, including topological insulators. Surprisingly, Zener tunneling occurs also between band
subvalleys separated by energy much larger than the band gap.
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1. Introduction

Small band gap semiconductors are expected to possess trans-
port characteristics that differ significantly from conventional
wide-gap materials due to Zener (or Klein) tunneling, a phenom-
enon in which carriers undergo vertical transitions across the band
gap, which can substantially increase electrical conductivity. This
phenomenon is relevant for a number of novel systems, such as
small band gap nanotubes or multi-layer graphene-based systems
[1,2]. Topological insulators are another important example, thanks
to their variety of interesting physical properties and promising
applications, such as low-power electronics and quantum
computing [3—7]. Topological insulators are characterized by
conductive surfaces, while their bulk phases have a small band gap,
and they may therefore display Zener tunneling and enhanced bulk
conduction, which warrants investigation.

The de-facto tool of choice for first-principles simulation studies
of electronic transport properties in crystals is the ab initio Boltz-
mann Transport Equation (aiBTE), which provides estimates of
transport properties in good agreement with experimental mea-
surements (e.g. [8—13]). However, this semiclassical approach is
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not always sufficient to model electronic transport properties.
Zener tunneling, for example, is not captured by semiclassical
models, as they omit contributions from off-diagonal components
of the flux operators. Sophisticated models based on the non-
equilibrium Green’s function methods [14] are capable of over-
coming the limitations of semiclassical models. However, lack of
efficient numerical and theoretical formulations prevents the
combination of these approaches with first-principles computa-
tions that can treat realistic materials, and neglect the critical in-
fluence of scattering on the charge flux. Here we explore a new
approach based on the Wigner function: this formalism is partic-
ularly appealing as it is exact in principle and, as discussed below,
reduces to the aiBTE when off-diagonal flux components are
neglected. The use of the Wigner function to study materials’
electronic properties has been limited so far to studies of model
Hamiltonians (see e.g. Ref. [15] for a recent review). In contrast,
first-principles modeling can provide not only a more accurate
description of real materials’ Hamiltonian, but also an accurate
description of electronic scattering that is responsible for the
relaxation of the out-of-equilibrium system. This work formulates
the generalized transport approach building on recent progress in
first-principles computations of electron scattering rates and fills
this methodological gap, opening possibility for the study of first-
principles electronic properties of realistic materials.

In this work, we derive and implement from first-principles an
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equation of motion for electrons, termed the ab initio Wigner
transport equation (aiWTE) based on the single-particle Wigner
distribution function. The formalism is capable of describing the
space-time evolution of electrons, including effects due to elec-
tronic scattering, and captures the off-diagonal contributions of
flux operators to transport properties. This equation is explicitly
solved for the set of electronic transport coefficients, in particular
electrical conductivity and Seebeck coefficient, showing how they
can be significantly different from their semiclassical counterpart
due to the presence of off-diagonal components of the Wigner
distribution function. We apply the formalism to a first-principles
study of the bulk transport properties of the topological insulator
Bi;Ses. We show that at small doping concentrations, the aiWTE
estimates of bulk electronic transport properties deviate signifi-
cantly from semiclassical estimates, due to the presence of Zener
tunneling, i.e. vertical transitions that couple carriers of valence and
conduction bands.

2. Theory

fpysy (X, K6, 8) T . 1 .af(& k.t)
B Ta— +£[f‘(") +d(k)-E.f(x,k,)]ppss t5 v(k), —x
7eE.afbb’ss’(x7 k, t) _ afbb’ss/ (x, k, 3]
ok ot coll

We start by considering the ground state Hamiltonian Hy of a
crystal, which we assume to be an independent-particle Hamilto-
nian with eigenvalues ¢;(k) and Bloch states y;,,;(x), where x is the
position, k the wavevector, b the band index and s = + 1 the spin
index. The ground-state is perturbed by a constant electric-field E
which couples with the carriers’ charge e and by the electron-
phonon interaction H_p, so that the total Hamiltonian is H =
Ho + ex-E+ H,_py. To derive an equation of motion for such a
system, we use the single-particle Wigner function f of the system
[16], defined as the Wigner transform of the density matrix p as

Ak Ak )7 (1)

fbb’ss' (Xv k7 t) = %emk.xl)bb’ss’ <k + 2 k- 7 t

where t is the time. We build the Wigner function through a
transformation of the density matrix ppys (k, k') in the reciprocal
space representation. Such Wigner transform consists in a rotation
of variables k, k' _’k+va k' — k combined with a Fourier transform
on one variable. The Wigner function operates in a phase-space
representation, which is especially useful to draw connections be-
tween quantum and classical mechanics.

The evolution of the Wigner function [17,18] is found through a
Wigner transform of the equation of motion of the density matrix,
and has been shown to be

afbb’ss’ (x7 k7 t)
ot

_ %(f (x, k, t) *H (x, k) 3)

7H(X? k)*f(xa k? t))

= - {{f(xv k? t)7H(X7 k)}}bb’ss’ (2)

where {{f,H}} is the Moyal bracket (the quantum mechanical
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extension of the Poisson bracket) and the Moyal product * is
defined as

fHH =f(x, k)exp (5 % SRR %))H(x, k). (4)

where H(x, k) is the Wigner transform of the Hamiltonian, and the
arrows indicate that the derivative operator is acting to the left/
right operators.

We now simplify the Hamiltonian supposing that the electron-
phonon interaction is weak and evaluate the Moyal bracket for the
single-particle part of the Hamiltonian; the electron-phonon
interaction is added later as a perturbation. Since we are inter-
ested in macroscopic properties, we can make the assumption that
only slow spatial variations of the Wigner function are relevant.
Therefore, we expand the Moyal product in Taylor series to the
lowest orders of # and find an equation of motion which we term
the ab initio Wigner Transport Equation (aiWTE), that is

} bb'ss'

(5)

where {,} is an anticommutator, &}y (K) = 0pp0sseps(k) is a
tensor of electronic energies, dyyss (k) = (1 — 0p ){(kbs|ex|kb’s’) is a
tensor of electric dipoles between two Bloch states (typically used
to describe optical excitations), and vy (k) is the velocity oper-
ator, defined from the commutator of the Hamiltonian and the
position operator as v = %[H, r]. The electron-phonon scattering

operator af"b’”’a#ko” is added as a perturbation to the aiWTE and is
built using scattering rates from the Fermi Golden rule [19—23]. We
refer to the Supplementary Information for a more detailed deri-
vation of the aiWTE.

The aiWTE needs to be solved to obtain an estimate of the
single-particle Wigner distribution function. As a first comment, we
note that the aiBTE is recovered as a limiting case of the aiWTE,
when the off-diagonal terms b=b’ and s=s’ are set to zero. This
corresponds physically to a situation when different bands do not
couple via Zener tunneling. This can happen, for example, when
neither thermal excitation nor dipole interaction provide sufficient
energy to allow for the vertical transition of one particle from one
band to another. Therefore, the most interesting terms to discuss in
the aiWTE are the off-diagonal terms, which introduce the possi-
bility of additional electronic transitions, or couplings, between
different electronic states at a given wavevector k. We further note
that some of the off-diagonal terms of the aiWTE shown here are
absent in other works based on either the density matrix or the
Wigner function [24—29]. Additionally, we note that the electronic
aiWTE is conceptually similar to a formalism developed for phonon
transport in Ref. [19], although here we use a simplified derivation
and include the effect of external forces (the electric field).

The aiWTE can be solved to estimate transport coefficients with
a technique similar to the one used for the aiBTE. For steady-state
transport in a bulk system, the Wigner distribution is stationary
in time and independent from the particular position inside the
bulk; therefore, we look for a solution in the form f},;s (k). Next, we
look for the linear response to an applied external electric field E or
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a temperature gradient VT and write fyyc (k) = fps (k) + ffl‘),ss,(k)Ei
Or fypes (k) = fps(K) + bel’),ss,(k)V,-T, where i is the direction of the
applied perturbations and f(k) is the Fermi—Dirac distribution
function. We further adopt the relaxation time approximation,
which simplifies the treatment of the scattering operator. After
inserting these two proposed solutions in the aiWTE, and retaining
only terms up to linear order in E or VT, we find two equations for
the diagonal part of the aiWTE:

evhyes 0 225 ®) 1y aeypt t). (6)
and
. afbbss (k)

Vhpss () + 225> = Ty (R)fy (K) (7)
where Ty (k) is the carrier's linewidth. These equations are
equivalent to the standard aiBTE for describing electronic transport
within the relaxation time approximation. However, the aiwTE
also gives rise to two equations for the off-diagonal terms of the
Wigner distribution, which are

i(eps (Ie) — etyg (1)) (Re) + (f s () = Fis (k)> dhysy (K)

(8)
Tys(k) + Tpg (k) £, , ,
= IO + Ty (k) 5 2 )f,f,‘j,ss,(k), b#b',s#s,
and
. 1 [ ofps (k) Of ps(k) | ;
ieps 1) — e ()T ) | L2200 YO )t g
Lps(k) + T'pg () .1,
_ bs( ) 5 bS( )fl;l;;/ss/(k)a bib/75=#$/,
9)

describing the response of the system to electrical and thermal
perturbations, respectively. Now the aiWTE is in a form that can be
readily solved for f£ and fT with some algebra, allowing us to
reconstruct the Wigner distribution of a crystal in presence of an
electric field or a thermal gradient.

Having found the Wigner distribution, transport properties are
readily obtained. For example, the charge current density is

. e
3= 57 DAV (0 (10)

where V is the crystal unit cell volume and Nj the number of
wavevectors used to integrate the Brillouin zone. Additionally, the
heat flux is

q=ﬁ%<ebs(k> — V()£ (K)) ppss - (1

These definitions readily allow us to compute transport co-
efficients using an approach typical of transport theory. After
inserting the solution to the aiWTE in the definition of j and g, it is
readily seen that charge current and heat flux can be written in the
form j = LggE + LgrVT and q = LgE + L7 VT, where L denotes the
Onsager coefficients. Transport coefficients can be expressed in
terms of these Onsager coefficients: the electrical conductivity ¢ =

Lgp, the Seebeck coefficient S = — LglLpr, and the thermal
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conductivity k = — (Lrr — LrgLgd Ler).
We now inspect the electrical conductivity in more details. Since
Jj is linear in f,pss (), the total electrical conductivity ¢ is a sum of

; ; Sbuti _ aiBTE ;s
diagonal and off-diagonal contributions ¢;; = o?j' + Aoy, where i, j

are cartesian labels. Here, a;}"BTE comes from the diagonal terms of
the Wigner distribution (b = b’ and s = §’) and is equal to the es-
timate from the aiBTE:

i e? f s (k) j
ag}BTE :m % 658 ”Lbss(")”lbbss(k)Tbs(") , (12)

where 7y,5(k) = h/T'ps(k) is the carriers’ lifetime. This semiclassical
conductivity is corrected by an additional term Agj; that can be

found inserting f,; .., (k) in the definition of j and is

Aoy = 2e? fb’s’(k) _fbs(k)
v % Nk kbb'ss' Eb’s’(k) - ebs(k)
bs+#Db's' (13)
oo () (K (Tos (K) + Ty ()
4(epys (K) — eps(k))® + (Tps(K) + Ty (k)

We can now understand the effects of the off-diagonal correc-

tions. First, the correction Ag¢ is positive (note that fy (k) is a
monotonic function of e;s(k) ), and therefore the aiWTE will always
adjust the semiclassical prediction of conductivity to higher values.
Second, the correction depends on a few quantities: the energy
difference between electrons and holes, their linewidths, and ve-
locity. One scenario where this correction is relevant, for example,
is whenever the energy difference between an electron and a hole
is comparable to their linewidth, so that the two carriers interact.
The strength of such interaction is determined by the velocity
matrix element vy (), i.e. the matrix element for the optical
transition. In addition, a strong dipole coupling can also occur be-
tween states that are far from the conduction or valence band edge,
as discussed below. Whenever this off-diagonal correction is large,
the system allows for an additional transport mechanism, known as
Zener tunneling, in which electrons propagate by tunneling across
the band gap. In contrast, we stress that Zener tunneling, or similar
spontaneous vertical electronic transitions, are entirely omitted in
the aiBTE formalism, since the aiBTE doesn’t include off-diagonal
contributions from the velocity operator.

3. Computational methods

All quantities appearing in the aiWTE are available from first-
principles codes and we can therefore apply this formalism using
fully ab-initio parameters.

We use density functional theory as implemented in the plane-
wave software suite Quantum-ESPRESSO [30,31]. To compute the
ground state, we use ultrasoft pseudopotentials from the GBRV li-
brary [32], with the PBEsol functional. We use an energy cutoff of 80
Ry, and integrate the Brillouin zone with a 8 x 8 x 8 mesh of k-
points. We build the trigonal unit cell using experimental estimates
of the crystal structure [33], i.e. with a lattice parameter of 9.839 A,
and an angle ¢ such that cosa = 0.91068. The Wannier functions
are computed using p orbitals on both Bi and Se atoms as initial
guesses.

Phonon properties, and the electron-phonon matrix elements
are computed with density-functional perturbation theory [34] on
a coarse grid of 4 x 4 x 4 g-points. Electron-phonon matrix ele-
ments are subsequently interpolated on a finer grid of 39 x 39 x 39
Brillouin zone wavevectors using a mixed Wannier and linear
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interpolation [12], while electronic energies and velocities are
interpolated using Wannier90 [35]. Transport properties have been
implemented in a custom-made software. The Dirac-delta ensuring
energy conservation during an electron-phonon scattering event
has been approximated using an adaptive-smearing scheme [36].
Transport properties have been converged with respect to the k-
points mesh used to integrate the Brillouin zone. The scattering
operator, detailed in the Supplementary Information, is built
considering only intrinsic electron-phonon scattering. The
electron-phonon coupling includes the effect of long-range polar
interaction, which contributes significantly to transport co-
efficients, and is evaluated according to the methodology of
Ref. [37]. While the scattering operator may be treated beyond the
relaxation time approximation with techniques similar to those of
Refs. [8,9,12], all results of this study are obtained within the
relaxation time approximation, as it allows for significantly faster
simulations. We note that results beyond the relaxation time
approximation would only affect the diagonal components of the
Wigner distribution, but not the off-diagonal components since the
action of the scattering operator on the off-diagonal components of
the Wigner distribution involve only the carriers’ lifetimes/line-
widths (see Eq. 18 of Supplementary Information).

4. Results

We now apply the formalism to study the intrinsic phonon-
limited electronic transport of bulk Bi,Ses. In Fig. 1 we report the
band structure [38,39] and the density of states (DOS) for this
narrow-gap semiconductor. We estimate a quasiparticle gap of
0.2 eV, in agreement with experimental estimates [40]. We also
mention that, while DFT may not always be accurate in estimating
the band gap, the qualitative aspects of the results discussed below
do not strongly depend on the precise band gap value. It is worth
noting that the DOS increases away from the Fermi level (set at 0 eV
at the middle of the band gap) and flattens at energies of
approximately —0.8eV and 1.0eV for the valence and conduction
bands, respectively, indicating that the subvalleys are separated by
an energy of approximately 1.8 eV.

In Fig. 2a (b), we estimate the electron-phonon limited electrical
conductivity o of Bi;Ses in the in-plane direction as a function of
temperature for different values of n-type (p-type) doping con-
centrations. Dashed lines represent the semiclassical estimates

g%BTE \while aiWTE estimates are shown in solid lines. For the
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Figure. 1. Electronic band structure and density of states of Bi,Ses. Electronic band
structure and density of states (DOS) of Bi,Se; near the Fermi energy, set at the center
of the band gap. The bulk crystal is characterized by a small gap, opened by the spin-
orbit coupling. We also note from the DOS that subvalleys of valence and conduction
bands are approximately 1.8 eV apart in energy.

2 SO|S2 F

Materials Today Physics 19 (2021) 100412

highest doping values, when the chemical potential shifts into the
conduction (valence) band, the conductivity has the typical
metallic-like behavior of decreasing with temperature. Under these
conditions, aiBTE and aiWTE do not differ significantly, except at
higher temperatures. In the Supplementary Information, we briefly
discuss a comparison with available experimental results which, for
the purpose of the present study, shows good qualitative agree-
ment especially at large doping concentrations.

For lower doping concentrations the chemical potential lies in
the band gap and we thus observe a semiconducting behavior of o
increasing with temperature. The semiclassical model predicts a
smaller conductivity than the aiWTE estimate. In fact, when only a
few carriers from the bottom of the conduction (top of the valence)
band are excited, the average carriers’ group velocity is small, due
to the quadratic nature of the band minimum. Therefore, the
semiclassical contribution to electrical conductivity tends to be
rather small. The aiWTE corrects this picture, including the Zener
tunneling effect [2]. As carriers from valence and conduction band
are close in energy, they can interact and contribute to the electrical
transport through the tunneling effect, as discussed above. For
small dopings, the aiWTE correction is significant, and can be much
larger than the aiBTE conductivity value. For the smallest value of
doping reported (10'%cm™3), this correction is largest at lower
temperatures. The doping of 10'8cm 3 is an intermediate case, with
metallic behavior at low temperatures (and thus smaller aiWTE
correction) and semiconducting (with larger aiWTE correction) at
higher temperatures as the chemical potential moves from the
conduction band into the band gap. We can thus conclude that a
substantial portion of electrical current at low doping is carried
through the Zener tunneling included in the aiWTE formalism: the
current is not only caused by the carriers traveling at a finite group
velocity, but also by carriers’ tunneling between single-particle
Bloch states.

In Fig. 2, panels c and d, we report the Seebeck coefficient S for
n-type (p-type) doping concentrations, with aiBTE results in
dashed lines and aiWTE in solid lines. The Seebeck coefficient is
usually expected to have negative values for n-type doping and
positive for p-type. However, there are deviations from this
behavior, and the Seebeck coefficient can even change sign when
temperature is varied at fixed doping concentrations. This complex
behavior is not caused by the off-diagonal terms of the Wigner
distributions, and the Seebeck coefficient sign changes are
observed when using the aiBTE as well, e.g. due to the bipolar effect
where minority carriers are thermally excited across the band gap.
Such behavior has been found for Bi;Tes [41] and CoSbs [42], where
the Seebeck coefficient exhibits marked temperature dependence.

The Wigner correction tends to make the Seebeck coefficient
smaller in absolute value, which may be attributed to the electrical
conductivity appearing at the denominator of the definition of the
Seebeck coefficient. As for the case of electrical conductivity, the
off-diagonal correction is more prominent at small values of doping
concentrations and low temperatures. This may have a significant
consequence when estimating thermoelectric properties, such as
the power factor that depends on the square of the Seebeck coef-
ficient. In this case, the inclusion of off-diagonal components of the
Wigner distribution lead to a revision of power factor estimates to
smaller values.

We now examine the relationship of electrical conductivity ¢
and open-circuit electronic thermal conductivity k.. The
Wiedemann-Franz (WF) law defines the Lorenz number L = %,
which in the ideal metallic limit is a constant Ly = 2.44-10°8
WQK 2. Knowledge of L is necessary to decouple the electronic
contribution k,; and the lattice contribution kp, from measure-

ments of the total k. In Fig. 2 e and f we plot the computed ratio ﬁ
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Figure. 2. Transport properties of Bi,Se; from semiclassical and Wigner formalism. Computational estimates of the in-plane electrical conductivity (panels a and b), Seebeck
coefficient (panels ¢ and d), and Lorenz number ratio (panels e and f, see text for description) of Bi,Ses as a function of temperature, for different values of n-type or p-type doping
concentration. Solid lines are estimated using the Wigner transport equation, while dotted lines are semiclassical estimates obtained solving the Boltzmann transport equation. For
small doping concentrations, the interaction between electrons and holes significantly affect the estimates of transport coefficients.

for several temperatures and n-type or p-type kind of doping
concentrations, using both aiBTE and aiWTE in dashed and solid
lines respectively. At high doping the system has metallic character,
and both predictions closely follow the WF law. In the case of small
doping, in the bipolar regime, the semiclassical aiBTE predicts large
deviations from the WF law, as has been discussed previously [13,
43—45]. Remarkably, in the aiWTE solution the Lorenz numbers are
much closer to the expected range for semiconductors, indicating
that quantum transport effects included in the aiWTE strongly
suppress deviations and work towards restoring the validity of the
WF law.

In Fig. 3a, we analyze the contributions to the aiBTE electrical
conductivity as a function of the carriers’ energy at doping con-
centration of 10'® cm~3, and temperature of 700 K. This histogram
is built such that the area under the curve integrates to the total
electrical conductivity. Within the semiclassical relaxation time
approximation, the quantity plotted is an energy-resolved histo-

af'gé")v%bss(k)'rbs(k), i.e. the contribution of a single

mode to the aiBTE electrical conductivity. As expected, the domi-
nant contributions to electrical conductivity come from carriers
whose energy is close to the chemical potential (set at O eV). The
contributions of other carriers decay exponentially as their energy
gets further from the chemical potential.

The aiWTE correction A¢ cannot be resolved in terms of a single

EZ
gram of e

carrier’s energy, since it involves the tunneling between two states
at different energies. Therefore, in Fig. 3b, we plot the contributions
to the electrical conductivity as a function of two interacting car-
riers energies. On the diagonal, we find again the aiBTE-like terms
shown in Fig. 3b. In addition, we can see important off-diagonal
contributions to the electrical conductivity that are not present in
the aiBTE and are introduced with the aiWTE. In particular, there
are two peaks of contributions to electrical conductivity, that
couple electrons of energy 1.0 eV with holes at —0.8 eV. These two
values correspond to the average energies of the valence and
conduction bands, when the DOS reaches the corresponding
maximum values. Therefore, in contrast to the typical intuition of
the Zener tunneling, we find that the most significant coupling
between carriers takes place far from the chemical potential, with
carriers of energy much larger than the thermal energy. For this
material, the dipole interaction between carriers in subvalleys of
the valence and conduction is thus particularly strong, allowing for
high-energy carriers to contribute to transport. As a result, we
speculate that Zener tunneling may take place also in semi-
conductors with a wide gap and contribute significantly to elec-
trical conductivity, provided that the inter-band dipole interaction
is sufficiently strong, for instance in materials with high optical
absorption character.

We can gain further insight by looking at how different points in
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Figure. 3. Microscopic contributions to electrical conductivity from Boltzmann
and Wigner formalisms. Panel a: histogram of contributions to semiclassical electrical
conductivity as a function of the carrier energy, for Bi,Ses at 700K and n-doping at 10'®
cm®. Panel b, 2D histogram of contributions to the electrical conductivity for the same
system as estimates with the Wigner transport equation against the energy of two
coupled carriers. Off-diagonal contributions represent electrical conductivity arising
from the coupling between electrons and holes.

the Brillouin zone contribute to the conductivity. In Fig. 4, we plot
the contributions to the in-plane electrical conductivity from car-
riers with wavevector lying on high-symmetry lines of the Brillouin
zone, the y-coordinate of the dot in figure is positioned according to
the carrier’s energy. The green dots’ radius is proportional to the
contribution of such carrier to the aiBTE electrical conductivity, i.e.
the contributions from the diagonal part of the Wigner distribution,
whereas the red dots radius is proportional to the electrical con-
ductivity contribution from the off-diagonal components of the
Wigner distribution. Quantities are computed for the electrical
conductivity at temperature of 700K and doping concentration n =
1018 cm—3. As one would expect from semiclassical arguments, the
diagonal contributions are mostly originating from carriers of en-
ergy close to the band gap. The contributions from the off-diagonal
components instead extend to carriers that are further from the
band gap edge. States close to the band gap at the I point have a
sizeable contribution to the off-diagonal conductivity. However,
subvalleys overall contribute more significantly to the conductivity,
especially due to the larger availability of states for the vertical
transitions to take place. We further note that there is not a single
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Figure. 4. Microscopic contributions to electrical conductivity from Boltzmann
and Wigner formalisms. The dispersion relation of carriers on some high-symmetry
lines are plotted together with the contributions to the in-plane electrical conductivity
of BiSes at 700K and doping concentration of n = 1018 cm?. In particular, the radius of
green dots (mostly visible only near the band gap at the I point) is proportional to the
contribution to electrical conductivity from the diagonal components of the Wigner
distribution, while red dots radius is proportional to the contributions of the off-
diagonal Wigner distribution. While semiclassical transport mostly originates close
to the band gap at T, the corrections from the aiWTE are coming from several states
especially in the conduction and valence subvalleys.

transition that dominates the off-diagonal effects. Lastly, we stress
that diagonal and off-diagonal contributions have not been drawn
to scale with respect to one another. In fact, diagonal contributions
are mostly determined by carriers close to the chemical potential
and sum up to a conductivity of ¢%BTE = 2.9.10* S/m. The off-
diagonal conductivity A¢ =4.4-10% S/m receives contributions
from carriers over a much larger energy range. As a result, if the
diagonal contributions were drawn to the same scale of the off-
diagonal ones, green circles would appear much larger than what
is shown; therefore, green radii have been shrunk by a factor about
40 in order to fit in the figure.

So far, we have seen that the off-diagonal contributions to
electrical conductivity at energies far from the chemical potential
arise from a large presence of available states. However, Eq. (13)
depends on several other factors. In Fig. 5a, we plot the average
lifetime as a function of carrier’s energy, at the same doping density
and temperature of Fig. 3. Here we can see that lifetimes tend to be
large for states close to the band edges and decrease away from
them: to a first approximation, the average lifetime as a function of
energy scales inversely proportional to the density of states.
Therefore, the decrease of lifetimes is offset by the larger avail-
ability of states, which still allows for a sizeable off-diagonal con-
tributions from states away of the band gap. In Fig. 5b we also plot
the energy-resolved histogram of the velocity operator [vpy sy (k)| in
the in-plane direction, where the two axis represent the energies of
the carriers e5(k) and ¢, (k) respectively, and the color intensity
represents the absolute value of the velocity operator matrix
element. Clearly, in order to have a sizeable Wigner correction, it is
essential for the velocity operator elements to be sufficiently large.
However, one can see that the energy values where the velocity
elements are largest do not always coincide with the energies of
states that contribute most to the conductivity. Therefore, the off-
diagonal effects of the Wigner distribution are not easily inter-
preted in terms of a single factor appearing in Eq. (13): the overall
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Figure. 5. Analysis of electronic lifetime and velocity. Panel a: average of electronic
lifetimes 7,5(k) as a function of energy, for Bi,Se; at 700K and n-type doping con-
centration of 10'® cm>. The energy dependence of lifetimes is approximately propor-
tional to the inverse of the density of states. Panel b: 2D histogram of the velocity
operator vy, (k) as a function of the energies of the two states e,(k) and ey (k).
Diagonal matrix elements are the electronic group velocity, while off-diagonal ele-
ments are related to the dipole operator. The presence of states with large off-diagonal
velocity allows the coupling needed for vertical transitions.

correction arises due to a combination of large linewidth and ve-
locity (dipoles), as well as high availability of states for the
transitions.

5. Conclusions

First-principles simulations of electronic transport are often
limited to the semiclassical approximation, that excludes contri-
butions to transport coming from non-semiclassical particle dy-
namics. In this study, we have shown that the Moyal equation of
motion leads to the Wigner transport equation, an equation of
motion for the Wigner function that can be solved using first-
principles techniques. The formalism has a broader range of
applicability than the semiclassical Boltzmann transport equation,
and includes off-diagonal contributions to charge and heat cur-
rents. In particular, the formalism captures contribution to trans-
port coming from spontaneous vertical transitions between
carriers’ states, that are especially relevant for narrow-gap semi-
conductors. Moreover, the semiclassical Boltzmann transport
equation is found as a simplified limit to the Wigner transport
equation, provided that off-diagonal components are neglected.
The formalism is well-suited to first-principles simulations and has
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been tested with a study of the transport properties of Bi,Ses. We
have shown that, while at high doping concentrations the Boltz-
mann equation provides a fairly accurate description of transport, it
fails at low doping concentrations. At low dopings, spontaneous
vertical transitions across the band gap, also known as the Zener
tunneling effect, contribute significantly to electronic transport,
modifying both electrical conductivity and Seebeck coefficient.
Surprisingly, Zener tunneling does not just take place across the
states closest to the band gap, but involves states that are signifi-
cantly further apart in energy, provided that the dipole interaction
is sufficiently strong. As a result, we have extended the range of
applicability of ab-initio transport simulations to materials where
band tunneling couples carriers and a semiclassical description is
no longer adequate.
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