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Exact continuum model for low-energy electronic states of twisted bilayer graphene
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We introduce a complete physical model for the single-particle electronic structure of twisted bilayer graphene
(TBLG), which incorporates the crucial role of lattice relaxation. Our model, based on k·p perturbation
theory and openly available, combines the accuracy of density functional theory calculations through effective
tight-binding Hamiltonians with the computational efficiency and complete control of the twist angle offered by
continuum models. The inclusion of relaxation significantly changes the band structure at the first magic-angle
twist corresponding to flat bands near the Fermi level (the “low-energy” states), and eliminates the appearance
of a second magic-angle twist. We show that minimal models for the low-energy states of TBLG can be easily
modified to capture the changes in electronic states as a function of twist angle.
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I. INTRODUCTION

The discovery of correlated phases in twisted bilayer
graphene (TBLG) has generated much interest in this struc-
turally and compositionally rather simple system; it has
emerged as a new platform for tunable electronic correlations,
and for exploring the nature of unconventional supercon-
ductivity [1,2]. The challenge in modeling these phenomena
from an atomistic perspective is that the actual structure of
TBLG near the magic-angle twist (∼1.1◦) where correlated
behavior is observed, consists of a large number of atoms,
exceeding 104. To make progress from the theoretical point of
view, a minimal model is needed that can capture the essence
of single-particle states near the Fermi level (“low-energy”
states). Such a model should reproduce the energy spectrum
as a function of their relative twist angle with reasonable
accuracy and with the required fidelity in capturing the nature
of low-energy states. The appearance of correlated behavior is
related to bands with very low dispersion (“flat” bands) caused
by interlayer hybridization between the two Dirac cones from
the different layers [3–6].

Existing models based on density functional theory (DFT)
calculations [7,8] or large supercell tight-binding Hamiltoni-
ans [9–11] are too complex to form the basis of a realistic
many-body theory. At the other extreme, simplified contin-
uum models allow for efficient calculations, but are based on
heuristic arguments about the nature of the relevant electronic
states [12–15]. An important feature of the physical system
is the presence of atomic relaxation near the magic-angle
twist, which has significant effects on the low-energy band
structure [10,16–19]. Many simplified models for the flat
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bands of magic-angle TBLG have been proposed based on
symmetry analysis, but they rely on empirical parametrization
and are designed for only the magic-angle twist configuration
[20–22], typically ignoring atomic relaxation.

Here, we present an ab initio k·p perturbation continuum
model for TBLG which accurately accounts for the effects
of atomic relaxation. Our model reproduces the results of
DFT-quality tight-binding Hamiltonians but at a smaller com-
putational cost and, more importantly, it applies to all twist
angles near the magic-angle value. Such a single-particle
model is a prerequisite for a physically meaningful prediction
of correlation effects, as the presence of unphysical features
in the single-particle band structure causes uncontrolled errors
in many-body calculations. We draw conclusions on the low-
energy electronic states at small twist angles, including the
interesting result that there are no additional vanishings of the
Fermi velocity in the range of the previously expected second
and third magic angles. As a complementary perspective on
how the electronic structure is affected by atomic relaxations,
we point the reader to Ref. [23], which studies a single
commensurate twisting angle (1.05◦) under various empirical
TBLG models. For reference, we compare our continuum
model to the seminal and widely employed k·p model of
Bistritzer and MacDonald [13] (BMD in the following), and
we adopt their dimensionless parameter α = ω/vF kθ for de-
scribing the twist angle θ , where vF is the Fermi velocity, kθ

is the wave vector set by the moiré length scale, and ω is their
effective interlayer coupling strength (0.11 eV).

Within k·p perturbation theory, the set of Bloch states of
the two graphene layers is augmented by the addition of
interlayer couplings due to the twist-angle-induced umklapp
scattering process. As the low-energy electronic structure of
TBLG is dominated by a pair of Dirac cones, the momentum
expansion can be carried out about one copy of the cone at a
valley K point. Taking also into account spin degeneracy, each
band represents four electronic states in a real system [24].

Here, we introduce an expanded ab initio k·p model which
gives a more complete physical picture of the TBLG system.
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Our model has three key ingredients: (1) relaxation of the
bilayer system [25], including the out-of-plane relaxation of
different regions as well as the in-plane strain corrections
to the Hamiltonian of the individual monolayers; (2) terms
beyond the first shell of couplings in the k·p continuum model,
which are necessary to capture the changes in stacking order
at small angles; and (3) inclusion of k-dependent terms, which
allow the k·p model to reproduce more accurately the particle-
hole asymmetry of realistic ab initio band structures.

The k·p terms are directly computed from an ab initio tight-
binding Hamiltonian model [26–28] for supercells spanning
the twist-angle range 0.18◦ � θ � 6◦. These terms have a
smooth dependence on θ , allowing for interpolation between
the specific twist angles that correspond to finite supercells,
to generate a model valid for any desired angle in that
range.

II. METHODS

A. Continuum expansion

Our low-energy Hamiltonian for TBLG contains 2 × 2
block-diagonal elements representing Bloch waves of individ-
ual graphene monolayers at various momenta. These blocks
are then coupled to one another by in-plane strain or interlayer
coupling that break the translation symmetry of the graphene
unit cell. These terms have the translational symmetry of the
moiré supercell up to a gauge-dependent phase, and thus can
be transformed from a real-space (r) basis to a momentum
(k) basis as dictated by the reciprocal lattice of the supercell.
There is also an implicit truncation on the number of k
included in the expansion, understood to be a momentum
cutoff parameter that is taken large enough to ensure sufficient
convergence of the electronic property of interest. Explicitly,
the Hamiltonian takes the form

H̃K =
[

H1
D(k) + A1(r) + V1(r) T̃ †(r) + {M†

+(r), k̂−} + {M†
−(r), k̂+}

T̃ (r) + {M+(r), k̂+} + {M−(r), k̂−} H2
D(k) + A2(r) + V2(r)

]
. (1)

Hi
D(k) are the Dirac Hamiltonians for each individual

graphene monolayer layer while Vi(r) is the external potential
for each layer. This external potential can include an electric
gating potential, sublattice mass terms, or a modulated electric
potential from doping or charge redistribution. Ai(r) is the in-
plane pseudogauge field coupled to the Dirac electron. These
terms are generated from the geometric deformation and
strain for each layer. When expanded in Fourier components
with supercell reciprocal lattice vectors, it can be written as
Ai(r) = ∑

pi
Ai

pi
eipi ·r, where pi = nG1 + mG2 for some

integers m, n and supercell reciprocal lattice vectors Gi.
The first part of the interlayer coupling term T̃ (r) gives the

scattering terms as in the original BMD model [13]. However,
we generalize the expansion to include higher-order terms as
T̃ (r) = ∑

qi
T̃qi

eiqi ·r, where qi = K1 − K2 + G for Ki the K
point of layer i’s Brillouin zone and G a reciprocal lattice
vector of the supercell. The remaining parts of the inter-
layer coupling terms, with k̂± = k̂x ± ik̂y, are the momentum-
dependent scattering terms. They are relevant for the particle-
hole asymmetric features of the tight-binding band structures.
The anticommutator notation is used to symmetrize the non-
commuting operators r̂ and k̂. The coupling constants here are
investigated numerically with twist-angle dependence. They
are derived from the projection of tight-binding supercells
with relaxed geometry obtained from elastic theory. We rel-
egate the detailed description of the extended Hamiltonian
and the procedure for obtaining the relevant terms of the
continuum model to a companion paper [29].

B. Validation against tight-binding models

In Fig. 1 we compare band structures of a full tight-binding
model, our continuum k·p model, and a fitted form of a
ten-band model [see Ref. [20], and Supplemental Material
(SM) [30]] across four representative angles. The continuum
model perfectly recreates the low-energy tight-binding bands

if we sample over both valleys of the monolayers. The ten-
band model for each angle is obtained by first computing the
k·p band structure along the high-symmetry lines, and then
optimizing the ten-band model’s 18 parameters to minimize

Err =
10∑

b=1

wb

√∑
k

[Eb(k) − εb(k)]2,

where Eb are the eigenvalues of the ten-band model for band
b and εb are the precomputed eigenvalues for the k·p model.
As we want the model to be most accurate near the Dirac cone
energy (E = 0), we use wb to weigh the central bands higher
than the outer bands during the optimization procedure.

C. Atomic relaxations

Our continuum model affords a natural interpretation of
the electronic structure of TBLG at small twist angles, which
is derived directly from the atomic relaxation so we describe
this aspect first. For twist angle θ smaller than a critical value
θc ≈ 1◦, the local atomic structure near the AA and AB stack-
ings of the two layers becomes independent of θ . This creates
a pattern of small circular domains of AA stacking and large
triangular domains of AB/BA stackings. Domain walls (DWs)
of intermediate stacking separate the AB and BA domains
and connect the AA regions. This creates local electronic
environments which are locked in with respect to changing
twist angle for θ < θc, where the TBLG system consists of
a few fixed elements [10,18,25], and only their length scale
changes for decreasing twist angle. These elements are the
AA regions which have a local twist of θAA = 1.7◦, which
is independent of the overall twist angle θ between the two
layers, the AB and BA regions with a negligible local twist.
Moreover, the diameter of the AA regions and the width of the
DW regions are approximately equal and remain unchanged
for θ < θc [18]. These features are shown in Fig. 2 for
θ = 0.9◦.
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FIG. 1. Band structures for fully relaxed twisted bilayer graphene for a full tight-binding Hamiltonian, our ab initio k·p model, and a fitted
ten-band model [20]. Four angles are checked, one well above the magic angle (1.35◦), one slightly above (1.08◦), one very close (1.02◦),
and one slightly below (0.93◦). The density of states (DOS) is calculated from a 40 × 40 sampling of the supercell Brillouin zone within the
k·p model.

The relaxation in TBLG is described by two simulta-
neous effects. In-plane relaxation decreases the area of the
high stacking energy AA region while it increases that of
low stacking energy AB/BA regions. Out-of-plane relaxation
causes corrugation, increasing the vertical separation between

the AA regions from the equilibrium distance in AB stack-
ing of 3.35–3.59 Å, a substantial change (>7%). These
relaxations are included in a tight-binding model via their
Fourier components [30]. The reduction in the size of AA
stacking can be understood as a minimization of planar stress

FIG. 2. Left: Structure of relaxed TBLG at θ = 0.9◦ with exaggerated vertical relaxation (top). AA, AB, and BA stackings, and domain walls
(DWs) are labeled along with a schematic representation (bottom) of the ten orbitals per unit cell of the moiré pattern required to describe the
low-energy electronic states: three at the AA region, one at each of the three DW regions, and two at each of the AB and BA regions. Right:
Wave-function magnitudes, |ψl |2, l = AA±, AAz, DW, AB/BA, of the ten-band model, at θ = 0.9◦, projected in the two layers (L1 and L2) and
the sublattices A and B of each layer; the total (far-right column) is the sum of all layer and sublattice contributions [30]. The underlying moiré
supercell lattice is given by the thin white lines.
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energy and stacking energies, and has been modeled through
various methods [10,17,18,25], leading to a relaxed pattern
in agreement with experimental results [16,31]. The role of
vertical relaxation in experimental devices is less understood,
as only free-standing TBLG has been modeled. Experimental
TBLG devices are typically encapsulated in hexagonal boron
nitride, so the actual corrugation may be reduced compared
to the free-standing case. To take this into account, we con-
sider two limits of the vertical relaxation: a “full” relaxation
model (free-standing bilayer result) and a “flat” model with
a constant interlayer distance equal to the average of AA and
AB interlayer distances (3.47 Å). The magic angle predicted
by the fully relaxed model, θc ≈ 1.0◦, is closer to the angles
where correlated phenomena are observed [1,2,32].

III. RESULTS

A. A ten-band model

The low-energy electronic states are directly associated
with and derived from the presence of the relaxation-induced
structural elements described earlier. Since the discovery of
correlated phases in TBLG, many simplified n-band models
have been proposed for the flat bands, usually based on local-
ized functions of the BMD model. One such minimal model
consists of ten bands [20], and we argue that it can accurately
capture both the band structure (Fig. 1) and the electronic
effects of the different stacking regions that emerge after
relaxation. This model comprises three orbitals on a triangular
lattice formed by the AA sites, one of pz-like character (AAz)
and two of (px ± ipy)-like character (AA±), three orbitals
on a kagome lattice formed by the domain walls, and four
orbitals on a honeycomb lattice, two for each of the AB and
BA domains. The full details of the ten-band tight-binding
Hamiltonian are provided in the Supplemental Material [30].

To compare our ab initio k·p results to the ten-band model,
we project nonorthogonal wave functions that satisfy the
symmetry conditions, shown in Fig. 2, from band-structure
calculations. The form of these wave functions is not sensitive
to the twist angle, and is robust for twist angles within ±0.2◦
of the magic angle. We note that the z and ± indexing of the
AA orbitals describes their symmetry properties over the moiré
supercell, not their composition in terms of atomic-scale C
pz orbitals. As described in Sec. II B, we have fit parameters
of the ten-band tight-binding model for θ ∈ [0.8◦, 1.8◦] to
reproduce the bands produced by our continuum model. The
flat bands near the magic angle have AA and DW character
[see Fig. 3(a)], showing that the coupling between these states
is a necessary ingredient of the model if it is to capture the
electronic structure as a function of twist angle. In particular,
the orbital character of the electron and hole bands at �

flips as one reduces the twisting angle: The hole band has
DW character for θ > θc and switches to AAz character for
θ < θc, while the electron band has the reverse character.
As the AAz and DW orbitals have opposite xy-plane mirror
symmetry eigenvalues (−1 and +1, respectively), the magic
angle represents a symmetry-protected band inversion.

B. Twist-angle dependence

Two important parameters in the k·p model are the effec-
tive interlayer coupling between orbitals of the same sublattice

FIG. 3. (a) Orbital character of the bands in the reduced ten-band
k·p model at θ = 0.90◦ < θc. (b) Energy of the flat bands at the �

point (E�) as a function of θ . One band is always AAz character
and one is DW character. The magic-angle regime is coincident
with a change in the band character ordering. (c) Dependence of the
interlayer k·p coupling terms on the twist angle θ from 6◦ to 0.18◦.
The inset gives the value of the individual terms with full relaxation,
and the main panel gives their ratio for both flat and full relaxation.

label, A → A or B → B, and that between orbitals of different
labels, A → B or B → A. These nearest-neighbor interlayer
couplings have been labeled wi, i = 0, 1 in previous studies
and have a simple geometric interpretation: w0 is the inter-
layer electronic coupling at the AA sites and w1 is the coupling
at AB/BA sites, averaged over the entire moiré cell. The values
of these wi parameters depend strongly on the twist angle θ .
As the lattice relaxes, the relative size of the AA regions is
greatly reduced while that of the AB/BA regions is increased,
causing a reduction in the value of w0 and a modest increase
in the value of w1. This dependence is shown in Fig. 3(c)
for the full and the flat relaxation models. The overall θ

dependence of the ratio w0/w1 is not sensitive to the relaxed
height assumption. The flat model has a larger ratio as the full
relaxation assumption moves the AB/BA sites closer together
(increasing their coupling and the w1 value) while moving
the AA sites farther apart (reducing their coupling and the w0

value).
To elucidate the salient features of the single-particle

model, we study three related indicators of the flat-band
phenomenon as a function of θ : the Fermi velocity (vF ), the
bandwidth (Ew), and the band gap (Eg). These are shown
in Fig. 4. All three are calculated for both the electron and
the hole sides of the flat-band manifold. The model without

013001-4



EXACT CONTINUUM MODEL FOR LOW-ENERGY … PHYSICAL REVIEW RESEARCH 1, 013001 (2019)

FIG. 4. Left panels: Features of the flat bands near the magic an-
gle for models with or without atomic relaxation: the Fermi velocity
vF (dashed black line, left axis), band gap Eg (red lines, right axis),
and bandwidth Ew (blue lines, right axis) for the electron and hole
states. In-plane relaxation creates a more well-defined magic-angle
regime (green shaded region) in all three features. Right panels:
Corresponding band structures in the magic-angle regime.

relaxation shows large discrepancies between the extrema of
the Fermi velocity, gap, and bandwidth, and the electron and
hole features have little in common. The two models (flat and
full) that include relaxation show a more regular dependence
on θ and a closer correspondence between the electron and
hole bands. The bandwidth for the hole band is always smaller
than that of the electron band, and the hole band achieves its
minimum twice. In general, vF = 0 does not coincide with
bandwidth minima. We thus draw the important conclusion
that the magic angle is not a single value, but rather a range
of ≈0.1◦ which spans the extrema in these key features. In
particular, even if an experimental device has a variation in
twisting angle over a probed region, if that variation is ≈0.1◦
the flat-band models may still be reliable enough to explain
correlation effects. This range for the full relaxed model is
θ ∈ [0.95◦, 1.05◦] and θ ∈ [0.80◦, 0.90◦] for the flat model.
The band structures for both models are similar after
accounting for this offset in θ .

An interesting behavior of the full relaxed model occurs
at the center of the magic-angle regime: Although the Dirac
cone still has symmetric dispersion near the K point, the hole
band dispersion is such that near the � point its energy is
higher than the Fermi level (see Fig. 4). Thus the charge
neutrality point does not occur at the Dirac point energy. This
effect persists in all of our ab initio k·p models (even without
relaxation), and is a behavior that can be observed in other
tight-binding models in the literature [10,11,33]. Assuming

FIG. 5. Normalized Fermi velocity as a function of α2 ∝ 1/θ2

for the BMD and the ab initio k·p models without relaxation (unre-
laxed) and with atomic relaxation (full relaxed).

the bands of TBLG are not perfectly particle-hole symmetric,
and that the flat-band regime is defined by a protected θ -tuned
band inversion, such a feature is unavoidable. For transport
measurement, this behavior would result in a range of 0.1◦ in
twist angle where the charge neutrality point of the flat bands
does not align with the Dirac point of the moiré superlattice,
as well as a reduction in the resistivity at the Dirac point
energy due to these other bands near �. Thus if a clean Dirac
point transport signature is used to assess experimental device
quality, this angle range will be difficult to observe.

C. Suppression of magic angles

Another important result of our calculations including
atomic relaxation in TBLG is the suppression of the second
magic-angle twist, defined as a smaller twist angle at which
vF = 0 [13]. In Fig. 5 we show the Fermi velocity as pre-
dicted from the BMD model and from our unrelaxed and
fully relaxed ab initio k·p models. Although our unrelaxed
model shows similar behavior to the BMD model with a
second magic angle occurring near θ = 0.5◦, the inclusion of
atomic relaxation removes this feature near 0.5◦. As the lattice
relaxation in TBLG becomes increasingly sharp on the moiré
length scale as the twist angle decreases [10,16–18,25], these
sharper features in the relaxation introduce additional impor-
tant couplings in the k·p model at larger momenta. Thus to ac-
curately model the electronic structure of TBLG below 1◦ our
inclusion of the higher-order k·p couplings terms is necessary.

IV. CONCLUSION

We have presented a k·p expansion of the low-energy
electronic states of TBLG that can be extended to arbitrary
order in perturbation theory. This exact continuum model
facilitates a better understanding of the single-particle features
of TBLG’s flat bands, and provides a solid foundation on
which to build correlated models.

We have made this model openly available in MATLAB,
C++, and PYTHON [34].
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