
526 | Nature | Vol 595 | 22 July 2021

Article

Pauli-limit violation and re-entrant 
superconductivity in moiré graphene

Yuan Cao1,4ಞᅒ, Jeong Min Park1,4ಞᅒ, Kenji Watanabe2, Takashi Taniguchi3 & 
Pablo Jarillo-Herrero1ಞᅒ

Moiré quantum matter has emerged as a materials platform in which correlated and 
topological phases can be explored with unprecedented control. Among them, 
magic-angle systems constructed from two or three layers of graphene have shown 
robust superconducting phases with unconventional characteristics1–5. However, 
direct evidence of unconventional pairing remains to be experimentally 
demonstrated. Here we show that magic-angle twisted trilayer graphene exhibits 
superconductivity up to in-plane magnetic !elds in excess of 10 T, which represents a 
large (2–3 times) violation of the Pauli limit for conventional spin-singlet 
superconductors6,7. This is an unexpected observation for a system that is not 
predicted to have strong spin–orbit coupling. The Pauli-limit violation is observed 
over the entire superconducting phase, which indicates that it is not related to a 
possible pseudogap phase with large superconducting amplitude pairing. Notably, 
we observe re-entrant superconductivity at large magnetic !elds, which is present 
over a narrower range of carrier densities and displacement !elds. These !ndings 
suggest that the superconductivity in magic-angle twisted trilayer graphene is likely 
to be driven by a mechanism that results in non-spin-singlet Cooper pairs, and that the 
external magnetic !eld can cause transitions between phases with potentially 
di"erent order parameters. Our results demonstrate the richness of moiré 
superconductivity and could lead to the design of next-generation exotic quantum 
matter.

A recent advance in quantum materials is the capability of creating 
artificial moiré superlattices through the stacking of two-dimensional 
materials with a twist angle and/or a lattice mismatch. In certain moiré 
superlattices, the appearance of flat bands gives rise to various corre-
lated phenomena1–5,8–14, including correlated insulators, ferromagnetic 
phases, and—in particular—superconductivity. Robust superconduc-
tivity has been reproducibly found in magic-angle twisted bilayer gra-
phene (MATBG)1–3, and more recently in magic-angle twisted trilayer 
graphene (MATTG)4,5. The simultaneous presence of correlated insu-
lator or resistive states in these systems has elicited extensive inter-
est in the origin of this unusual superconducting phase. Moreover, 
MATTG exhibits a unique electric displacement field tunability, and 
its superconducting state can be tuned into the ultra-strong coupling 
regime. These aspects make MATTG an attractive platform on which 
to investigate the nature of moiré superconductivity.

Superconductivity arises from Cooper pairing between electrons, 
and one fundamental question about superconductivity is its pair-
ing symmetry—namely the spatial symmetry and the spin configura-
tion. The former can be classified as s-wave, p-wave, d-wave or other 
exotic symmetries, whereas the spin configuration can be spin-singlet 
or spin-triplet. Most superconductors have a spin-singlet pairing, 
including conventional superconductors that can be described by 

Bardeen–Cooper–Schrieffer (BCS) theory as well as even-parity uncon-
ventional superconductors such as cuprates15. Conversely, evidence of 
spin-triplet superconductivity has been found in only a few systems, 
such as UPt3 (ref. 16) and UTe2 (ref. 17). Spin-triplet pairing between fer-
mionic atoms has long been investigated in the superfluid helium-3, 
which exhibits a rich phase diagram that consists of different triplet 
phases18. Recently, additional interest in spin-triplet superconduc-
tivity has emerged because of the accompanying odd-parity spatial 
symmetry, which can host topological states19 that are important for 
fault-tolerant quantum computing. For systems in which valley degrees 
of freedom are present—as is the case for many moiré systems—the 
order parameter may possess a richer combination of spin, valley and 
spatial symmetries20–22.

Here we perform quantum transport measurements in MATTG in 
the presence of a magnetic field parallel to the sample plane in order 
to gain insight into the spin configuration of the superconducting 
state. Our results indicate that MATTG is unlikely to be a spin-singlet 
superconductor. We fabricated high-quality MATTG devices in which 
the adjacent layers are sequentially twisted by θ and −θ, where θ ≈ 1.57° 
is the magic angle for MATTG, as detailed previously4 (Fig. 1a). Besides 
the theoretical prediction of nearly flat bands in MATTG—similar to 
those in MATBG23—MATTG additionally exhibits a unique electric-field 
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tunability4. The MATTG bands can be reduced to MATBG-like flat bands 
and a dispersive Dirac band23–26, and the hybridization between them 
can be controlled by the electric displacement field D. The number of 
electrons per moiré unit cell, known as the moiré filling factor, is defined 

by ν = 4n/ns, where n is the carrier density and n = θ

as
8

3

2

2  is the superla-

ttice density (a = 0.246 nm is the lattice constant of graphene). Figure 1b 
shows the longitudinal resistance Rxx, as a function of ν and D without 
any magnetic field, where a number of D-dependent correlated resis-
tive states are present at integer filling factors ν = +1, ±2, +3, ±4. Super-
conductivity appears in the vicinity of the ν = ±2 correlated states, and 
the highest critical temperature Tc is found at ν = −2 − δ (δ is a fraction 
smaller than 1); it approaches 2.9 K at ν = −2.4 (see refs. 4,5). The critical 
temperature is further tunable by varying D, and the optimal D/ε0 that 
maximizes Tc is located around ±0.4–0.5 V nm−1, where ε0 is the vacuum 
permeability. Near optimal ν and D, the superconductivity was found 
to be in the ultrastrong coupling regime4.

Pauli-limit violation
In a superconductor, the application of an external magnetic field sup-
presses superconductivity in two main ways. One is through the forma-
tion of vortices (for type-II superconductors), which leads to loss of 
superconducting coherence when the average spacing between vor-
tices is below their characteristic size ξ. However, such suppression is 
nearly absent when the magnetic field is parallel to the plane of an 
atomically thin two-dimensional superconductor. For example, the 
in-plane field that is required to thread one flux-quantum laterally 

through the MATTG unit cell is well in excess of 100 T (see Methods for 
a detailed estimate). Alternatively, a magnetic field can suppress super-
conductivity via the Zeeman effect, or through in-plane orbital effects27. 
The Zeeman effect, in particular, imposes an upper bound on the 
critical magnetic field of spin-singlet superconductors, known as the 
Pauli (or Clogston–Chandrasekhar) limit6,7. For weakly coupled BCS 
superconductors (that is, with ∆ = 1.76kBTc, where ∆ is the superconduct-
ing pairing gap and kB is the Boltzmann constant), and for a g-factor of 
g = 2, this is given by BP = 1.86 T/K×Tc. Above this field, the formation of 
Cooper pairs becomes energetically unfavourable. However, super-
conductivity above the Pauli limit can still exist in the presence of 
finite-momentum pairing or strong spin–orbit coupling. The former 
gives rise to the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state28,29, 
which can boost the critical magnetic field beyond the Pauli limit by a 
small amount30. The latter can lead, for example, to an Ising-like type 
of pairing, which can boost the critical field well beyond the Pauli 
limit31–33. For MATTG, the nominal Pauli limit at the optimal doping and 
displacement field is of the order of 4–5 T (assuming weak coupling 
and g = 2; see Methods for further discussion), depending on the 
selected resistance threshold.

Notably, we find that the superconductivity in MATTG at ν = −2 − δ 
persists even in the presence of a large parallel magnetic field B' = 10 T 
(Fig. 1d), which is much higher than the nominal Pauli limit. Figure 1e 
shows the evolution of the superconducting phase in the ν–D space 
as a function of B'. At B' = 10 T, a narrow region near optimal doping, 
ν = −2.4, remains superconducting in the range |D|/ε0 ≤ 0.6 V nm−1. In 
Fig. 1c, the robustness of superconductivity (that is, not a normal state 
with low resistance) is shown by measuring the evolution of the Vxx–I 
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Fig. 1 | Superconductivity in MATTG at high in-plane magnetic fields.  
a, Schematic of the experimental system. Four-probe measurements are 
performed by flowing current I and measuring longitudinal voltage difference 
Vxx and Hall voltage Vxy as shown. Top and bottom gate voltages (Vtg and Vbg, 
respectively) are applied to control the carrier density and electric 
displacement field in the sample. In-plane field B' (parallel to the 
two-dimensional plane) and out-of-plane field B) (perpendicular to the plane) 

are shown. A small B) is applied to correct for a possible tilt of the sample with 
respect to B'. Vbias is the a.c. bias voltage. b, d, Longitudinal resistance Rxx at 
B' = 0 T (b) and B' = 10 T (d) at T = 300 mK. c, Voltage–current (Vxx–I) curves at 
different values of B' at ν = −2.4, D/ε0 = −0.44 V nm−1 and T = 300 mK. Inset, 
magnification of the middle region shows the flatness of the Vxx–I curves at 
large B'. e, Evolution of superconductivity on the hole-doped side as a function 
of B'. Superconductivity persists up to B' = 10 T.
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(voltage–current) curves as a function of B'. Although the critical cur-
rent steadily decreases as B' increases, it is clear that at B' = 10 T, the 
Vxx–I plots still exhibit an extremely flat region at finite d.c. current 
bias—indicating zero resistance—and a sharp peak in the differential 
resistance dVxx/dI at the critical current.

To obtain the extent of Pauli-limit violation, we investigate the 
multi-dimensional datasets in ν, B' and T (at D/ε0 = −0.41 V nm−1). As shown 
in Fig. 2a, the size of the ν–T superconducting dome at −2 − δ shrinks as 
B' is applied, where T c

50% (see Methods for precise definition) at ν = −2.4 
(the optimal doping) is reduced from 2.7 K to 1.35 K at B' = 10 T.  
The resistance versus B' and T at ν = −2.28 and the corresponding Rxx−T 
traces are shown in Fig. 2b and 2c, respectively. The constant-resistance 
contours in Fig. 2b correspond to roughly 10%, 20% and 30% of the 
normal-state Rxx at B' = 0 T (see Methods), as shown in Fig. 2c. We find 
that the contours roughly follow the Ginzburg–Landau expression 
T αB∝ 1 − 2 (where α is a fitting parameter; see Methods) from Tc down 
to the lowest temperature, T ≈ 0.3 K (Fig. 2b). Using this formula, we 
can obtain the zero-temperature critical field Bc'(0) by extrapolation, 
using different percentages of the normal-state Rxx to calculate Tc. At 
ν = −2.28, we find Bc'(0) = 9.4 T (10% normal resistance), whereas Tc using 
the same threshold is 1.56 K, giving a nominal Pauli limit of BP = 2.9 T. 
The Pauli violation ratio (PVR), defined as Bc'(0)/BP, therefore reaches 
3.2 at this density.

Figure 2e shows the PVR plotted against ν in the −2 − δ dome. Notably, 
the PVR is always greater than 2 over the entire range of ν in the −2 − δ 

superconducting dome, and extractions with different normal-state Rxx 
percentage thresholds give largely consistent values of the PVR (see 
Extended Data Fig. 1 for the electron-doped side and Extended Data 
Fig. 2 for other devices, the PVR values of which are also greater than 2). 
In particular, we find the PVR to be approximately 2.5 even when ν is 
close to −3, near the edge of the superconducting dome (see Fig. 2a, 
B' = 0 slice and Fig. 2d) where T c

10% < 1 K. Around this density and dis-
placement field, the coupling strength determined by the coherence 
length and Tc/TF (where TF is the Fermi temperature) is substantially 
smaller4 than at ν = −2.28. These observations indicate that the large 
PVR is not directly correlated with the coupling strength, but rather is 
an inherent property of the superconductivity, such as its spin  
configuration.

Re-entrant superconductivity
We also observe additional superconducting phases at large B', for a 
range of D values that are smaller than the optimal value. Figure 3a  
shows the B' > 5 T region of the B'–T phase diagram at ν = −2.4 and 
D/ε0 = −0.31 V nm−1. In the low-temperature region close to the Berez-
inskii–Kosterlitz–Thouless (BKT) transition of the system4, the 
zero-resistance state (light blue) disappears around B' = 8 T. Above 8 T, 
however, a zero-resistance region reappears and persists to above 10 
T, signalling a re-entrant superconducting phase. On the other hand, 
T c

50%, which represents the centre of the superconducting transition, 
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Fig. 2 | Large Pauli-limit violation in MATTG. a, Evolution of the 
superconducting dome as a function of B'. Each colour plane shows the 
resistance versus ν and T at a fixed B'. At ν = −2.4 (optimal doping), Tc decreases 
to 1.35 K when B' = 10 T. b, B'–T phase diagram at ν = −2.28. The data points 
denote constant-resistance contours at 10%, 20% and 30% of the zero-field 
normal-state resistance, and the coloured tick marks on the B'-axis represent 
the corresponding Pauli limit. The contours roughly follow the Ginzburg–
Landau expression T α B∝ 1 − 2 (solid curves), where α is a fitting parameter. By 
extrapolating the contours to zero temperature, we find the critical magnetic 
fields 9.41 T, 10.18 T and 10.73 T, which give consistent PVRs of 3.23, 3.27 and 

3.23 for the 10%, 20% and 30% contours, respectively. c, Line cuts 
corresponding to b at a spacing of 1 T. d, Same as b for ν = −3. Extraction of the 
PVR at this density yields values of 2.37, 2.42 and 2.69, respectively, using 
resistance thresholds of 10%, 20% and 30%. e, PVR extracted as a function of ν 
for resistance thresholds of 10%, 20% and 30%. All measurements above are 
taken at displacement field D/ε0 = −0.41 V nm−1. The orange halo conceptually 
shows that the coupling strength is greatest near ν = −2.4, whereas the PVR does 
not have a strong dependence on ν. Extended Data Fig. 4 shows the PVR plotted 
against D at the optimal doping of ν = −2.4.
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decreases monotonically with the in-plane magnetic field. Figure 3b, c 
shows the corresponding Rxx–T curves for different values of B', in 
which the re-entrant superconductivity manifests as a crossing of the 
Rxx–T curves at T ≈ 0.6 K. We observe a similar re-entrant behaviour 
when examining differential resistance versus d.c. current bias at high 
B', as shown in Fig. 3d–f. For each curve in Fig. 3e, f, the differential 
resistance has a large peak corresponding to the major step in the 
Vxx–I curve at the critical current (Fig. 1d), and multiple ‘shoulders’ at 
smaller I. We find re-entrant behaviour with respect to B' at the first 
shoulder, which corresponds to a transition between a nondissipative 
state (dVxx/dI = 0; light blue region in Fig. 3d) and a slightly dissipative 
state (dVxx/dI > 0), whereas the position of the large dVxx/dI  peak evolves 
monotonically with B', analogous to the behaviour of T c

50%.
Investigation of the re-entrant superconducting behaviour in the 

full space of ν, D and B' reveals an intricate phase diagram that has 
multiple superconducting phases. Figure 4a shows the resistance ver-
sus B'–D. We denote the prominent low-field and high-field 
zero-resistance regions as SC-I and SC-II. At large D (|D|/ε0 > 0.5 V nm−1), 
SC-I directly transitions to a dissipative state as B' is increased. Con-
versely, at intermediate D (0.3 V nm−1 < |D|/ε0 < 0.5 V nm−1), we find that 
the boundary between SC-I and SC-II is marked by a continuous resis-
tive ‘filament-like’ region. As D decreases, smaller islands of supercon-
ducting regions appear between 7 T and 8 T (see  Methods for 
discussion). Figure 4b shows the density dependence of the phases at 
D/ε0 = −0.24 V nm−1. All of the high-field superconducting phases are 
visible only in the range −2.52 < ν < −2.28, close to the optimal doping 
ν ≈ −2.4. Figure 4c shows the temperature dependence of the transition 
between SC-I and SC-II. From 0.3 K to 0.6 K, a double-peak transition 
can be clearly observed. When the temperature is further decreased, 
the resistive features of the transition become weaker (see also 
Extended Data Fig. 3a). We performed bidirectional sweeps in B' at 
these values of ν and D, which reveal a hysteretic behaviour and may 

point towards a first-order transition (see Extended Data Fig. 3b, c). 
Figure 4d shows the evolution of the phases as a function of T and B' 
for different D at fixed ν = −2.4, which captures the evolution of the 
transition between SC-I and SC-II. We note that at D/ε0 = −0.47 V nm−1 
(close to the optimal D at zero magnetic field), we cannot clearly see 
the onset of SC-II—perhaps because it requires magnetic fields higher 
than the maximum that we were able to apply. The schematic phase 
diagram is summarized in Fig. 4e, in which the phase boundaries of 
SC-I, SC-II and the transition defined by T c

50% are illustrated.

Discussion
Our results indicate that the spin configuration of the superconducting 
state in MATTG is unlikely to consist of spin singlets. Although large 
violations of the Pauli limit have been observed for spin-singlet super-
conductors, these are typically due to one of the following mechanisms: 
First, strong spin-orbit coupling (SOC), such as in two-dimensional 
transition metal dichalcogenides31–33. However, graphene and graphene 
multilayers are known for their very weak SOC, including both the 
intrinsic term (of the order of tens of µeV, see refs. 34,35) as well as the 
Rashba term (for electric fields up to 0.8 V nm−1, as we use here)36. The 
SOC would have to be more than a factor of 30 larger (well in excess 
of 1.2 meV, the Zeeman splitting at 10 T) to account for the PVR values 
that we observe. Moreover, a violation of the Pauli limit due to SOC—as 
observed in TMDs—requires the breaking of inversion symmetry37. 
However, MATTG is inversion-symmetric (at zero D) and yet we still 
observe a PVR of approximately ≥3 (see Extended Data Fig. 4 for the plot 
of PVR against D). Although we argue that all of these SOC mechanisms 
(see Methods for additional discussion on other possible SOC-related 
effects) are unlikely to account for the PVR we observe, further work 
is necessary to fully determine whether there is any appreciable con-
tribution to the PVR from SOC in MATTG. Second, strongly coupled 
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Fig. 3 | Re-entrant superconductivity. All data were obtained at ν = −2.4 and 
D/ε0 = −0.31 V nm−1. a, R xx plotted as a function of B' and T, in the B' range 5–10 T. 
The superconducting phase present at B' = 0 is suppressed around B' = 8 T, and 
a re-entrant superconducting phase begins to appear. The re-entrant 
behaviour exists only in the region near zero resistance. b, c, Line cuts of Rxx 
plotted against T (b) and magnified view (c) at different values of B', showing 
the non-monotonic behaviour of the Rxx–T curves near the BKT transition 

temperature, around the transition field of B' ≈ 8 T. d, Differential resistance 
dVxx/dI plotted as a function of B' and I shows a similar trend to the temperature 
dependence, in which the re-entrant phase boundary near the critical current 
defines the zero resistance. e, f, Line cuts of dVxx/dI plotted against I (e) and 
magnified view (f) at different values of B' show similar non-monotonic 
behaviour as in b, c, demonstrating the re-entrant superconducting phase. 
Colour legends of c, f are the same as those in b, e.
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superconductors (with a large Tc/TF ratio) can exhibit a large ∆/kBTc ratio, 
which can give rise to a large apparent ratio of Bc/Tc that exceeds the 
Pauli limit. In MATTG, however, the PVR does not exhibit substantial 
variation across the entire superconducting dome (Fig. 2e), whereas 
the coupling strength varies by more than an order of magnitude4. It 
is therefore unlikely that the strong-coupling mechanism accounts 
for the Pauli-limit violation across the entire dome. We also note that 
neither of the above mechanisms can account for the stabilization of the 
re-entrant phase at high magnetic field. Third, in a singlet superconduc-
tor, the FFLO state could be stabilized at high magnetic fields beyond 
the Pauli limit (at zero temperature). However, in a two-dimensional BCS 
superconductor, the Bc enhancement is at most around 40% above the 
Pauli limit30—much less than the threefold violation that was observed 
in our experiments. Furthermore, the fact that the critical contours in 
the B–T phase diagrams follow quadratic behaviour from low tempera-
ture up to Tc (Fig. 2b, d) implies that even close to Tc—where an FFLO 
state is unlikely to form—the critical B is already much higher than 
the expected value for a spin-singlet BCS superconductor. Therefore, 
although FFLO-type physics could still be relevant for the high-field 
phases, it is unlikely to account for the large Pauli-limit violation in 
MATTG.

Given that none of the usual mechanisms that lead to Pauli-limit viola-
tion in spin-singlet superconductors are likely to have a dominant role 
in MATTG, it is logical to consider the possibility of a spin-triplet order 
parameter in MATTG. In a spin-triplet superconductor, the Cooper 

pairs have spin angular momentum S = 1, and the spin configuration of 
the order parameter can be represented by a complex vector18 d. The 
response of a spin-triplet state to an external field, B, crucially depends 
on the alignment between d and B. Neglecting orbital effects and SOC, 
an equal-spin pairing (ESP) state that has spins along the direction of 
B (d·B = 0) does not respond to the field at all, whereas a non-ESP state 
with d∥B is maximally suppressed by B, similar to a spin-singlet state. In 
magic-angle graphene systems, the additional valley degree of freedom 
can lead to an extra pair-breaking effect due to orbital effects, when 
Cooper pairs formed from electrons with opposite momenta (and thus 
opposite valleys) are subject to an in-plane B field27. Regardless of the 
spin configuration, this orbital pair-breaking effect can eventually lead 
to the suppression of superconductivity. Therefore, the ESP triplet 
state might be a viable candidate as a pairing state, which can account 
for the large Pauli-limit violation in the low-field state (SC-I) and be 
eventually suppressed owing to the orbital pair-breaking effect. An 
alternative scenario is a spin–valley locked pairing state at zero field20, 
which consists of a superposition of spin-singlet and spin-triplet states, 
and which rotates into a spin-polarized state at high magnetic field.

In addition to the large PVR, the observation of re-entrant supercon-
ducting phases provides further support for a non-spin-singlet pairing. 
Until now, superconductivity at high magnetic fields has most notably 
been identified in organic38,39 and ferromagnetic16,17,40 superconductors. 
Different mechanisms have been suggested to explain these exotic 
phases, including dimensional crossover38, exchange stabilization39 
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Fig. 4 | Field-induced transition between superconducting phases in 
MATTG. a, Resistance as a function of D and B' at optimal doping ν = −2.4. The 
measurements were performed at T = 0.4 K. SC-I and SC-II denote the zero-field 
superconducting phase (Fig. 2) and the high-field re-entrant phase (Fig. 3), 
respectively. They are clearly separated by a resistive ‘filament’. At fine-tuned 
displacement fields of around −0.23 V nm−1 and −0.12 V nm−1, we find additional 
regions that have lower resistance, which might signal the onset of additional 
phases. The dashed white line marks D/ε0 = −0.24 V nm−1; see b. b, Resistance as 
a function of ν and B' at D/ε0 = −0.24 V nm−1 (dashed white line in a). The white 
dashed line here denotes the optimal doping ν = −2.4. c, Temperature 
dependence of the plot of R xx against B', at the values of D and ν marked by the 

white dashed lines in a and b. Between SC-I and SC-II, there are clearly two 
resistive peaks. The curves are measured when ramping down the field.  
A bidirectional sweep in B' reveals some hysteretic behaviours, which might be 
suggestive of a first-order transition (see Extended Data Fig. 3). d, Evolution of 
the B'–T phase diagrams upon variation of D. The critical B', at which the 
transition between SC-I and SC-II occurs, varies with D. e, Three-dimensional 
schematic of the phase diagram of the superconducting phases in the |D|–B–T 
space. The red and blue surfaces denote the boundaries of the SC-I and SC-II 
phases, respectively, and the purple surface denotes the mean-field Tc 
determined by 50% of the normal-state resistance.
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and ferromagnetic fluctuations17,41. Compared to these systems, we 
note that the low-field phase and the re-entrant phase in MATTG are pos-
sibly separated by a first-order transition (see Methods and Extended 
Data Fig. 3), which is reminiscent of the transition between the A and 
B phases18 in helium-3. We also note that the re-entrant behaviour is 
observed only near the BKT transitions—not in the higher-temperature 
region in which the initial decrease in resistance occurs—which suggests 
that all the identified superconducting phases could correspond to 
the same instability that stems from the normal phase18. The change 
in BKT transition temperature TBKT near the transition might then 
be attributed to the difference in phase stiffness. As in the case18 of 
superfluid helium-3, such behaviour could imply that both SC-I and 
SC-II are spin-triplet phases with different order parameters. As one 
possibility, although SC-I is the ground state at zero field, SC-II could 
be a spin-polarized phase (non-unitary) that is stabilized only at high 
magnetic fields. The presence of the additional valley degree of free-
dom in MATTG enables a richer set of combinations of spin, valley and 
spatial symmetries with a multitude of possible order parameters. The 
electronic states that underlie the superconductivity could be spin–
valley flavour polarized as shown by recent experiments42,43, or have 
a more complicated structure44—for example, an inter-valley coher-
ent state45. Further investigations are required in order to determine 
the full pairing symmetry in the different superconducting phases of  
MATTG20–22.
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Methods
Sample fabrication
In brief, the MATTG stack is sandwiched between two hexagonal boron 
nitride (hBN) flakes 30–80 nm thick. The hBN and graphene flakes 
were first exfoliated on SiO2/Si substrates and then screened with opti-
cal microscopy. Then we use a dry pick-up technique to fabricate the 
multilayer stack. A layer of poly(bisphenol A carbonate)(PC)/polydi-
methylsiloxane (PDMS) on a glass slide is used to sequentially pick 
up the flakes. The three pieces of graphene that make up MATTG are 
in situ laser-cut from a single graphene flake44. The resulting stack is 
released on hBN on a Pd/Au stack. The Hall-bar is defined with electron 
beam lithography and reactive ion etching. The top gate and electrical 
contacts are made of Cr/Au. Further details can be found in ref. 4. Opti-
cal and atomic force microscopy pictures of the main MATTG device 
we studied are shown in Extended Data Fig. 5.

Measurement and data analysis
The electronic transport in MATTG is measured in a cryostat with base 
temperature of 0.25 K. We bias the sample with an a.c. current with 
frequency of 10 Hz, and measure the four-probe voltage with SR-830 
lock-in amplifiers, synchronized at the same frequency. The current and 
voltage signals are first amplified by 107 V/A and 1,000, respectively. 
Data of resistance hysteresis between SC-I and SC-II are measured using 
a current bias of 5 nA, whereas all other measurements are performed 
with a 1 nA bias. For d.c. measurements (Figs. 1c, 3d–f), we use a digital–
analogue converter to provide the d.c. bias current. The d.c. voltage is 
measured using a digital multimeter, whereas the differential resistance 
dVxx/dI is simultaneously recorded from the lock-in amplifier.

The in-plane field measurement is performed in a triple-axis vector 
magnet. We mounted the sample vertically so that an in-plane field up 
to 10 T could be applied using the Z axis of the magnet. The X axis mag-
net is used to compensate for the tilt of the sample (about 3°). To ensure 
an accurate calibration, we utilize the superconductivity in the device 
itself as a highly sensitive magnetometer. Essentially, for a particular 
in-plane field (which is applied through the Z axis of the vector magnet, 
Bz), we scan the perpendicular field (applied through the X axis of the 
vector magnet, Bx) and we record the longitudinal voltage Vxx on the 
sample, which is gated to the edge of the superconducting dome, where 
the voltage drop is just above zero. Because a perpendicular field 
quickly suppresses the superconductivity, the minimum in Vxx thus 
corresponds to a zero net perpendicular component experienced by 
the sample. Examples of the calibration curve are shown in Extended 
Data Fig. 6. We note that there is an approximately 15° angle between 
the Bx axis and the direction normal to the sample plane, so the net change 
in the perpendicular component is ∆B) ≈ ∆Bxcos15°, while the change 
in the in-plane component B∆ sin 15°x  (maximum about 100 mT)  
is negligible compared to the full field applied via Bz (up to 10 T). The 
accuracy of this calibration is determined by how well we can determine 
the centre of the calibration curve, which is typically better than 5 mT. 
For the measurements done at a fixed in-plane field, we perform this 
calibration procedure before the scan. For the measurements in which 
the in-plane field is varied, we first perform this calibration at the low-
est and the highest in-plane fields of the scan. We find out the Bx values 
that are necessary to compensate for those two in-plane fields, and 
subsequently, during the scan, we set the Bx to a value interpolated 
between those two values whenever the in-plane field is changed.

To further show that a small residual perpendicular component is 
not the cause of the SC-II phase, we measured the response of both SC-I 
and SC-II when an extra perpendicular field is applied via Bx, as shown in 
Extended Data Fig. 7a. Both SC-I and SC-II are gradually suppressed by 
B) as expected, indicating that the appearance of the re-entrant SC-II 
is not due to sample misalignment with the field axis. In particular, the 
non-superconducting separation between SC-I and SC-II persists at all 
B), indicating that SC-I and SC-II are separate superconducting phases. 

Extended Data Fig. 7b–e further shows Fraunhofer-like patterns at 
several in-plane magnetic fields. Although we did not see oscillations 
at zero field and optimal density and displacement field (see figure 1k 
in ref. 4), we indeed find evidence of Fraunhofer-like patterns at B( = 9 T  
and 7 T at ν = −2.4, D/ε0 = −0.31 V nm−1, indicating that both SC-I and 
SC-II phases are true superconducting phases with phase-coherent 
properties.

For the graphics in Figs. 2b, d, 3a and Extended Data Figs. 1, 2, because 
the raw data were taken at non-regular temperature intervals, we first 
interpolated the data into a regular grid in B( and T before plotting. We 
have checked that no artefacts are introduced by this interpolation. 
Raw data can be found in ref. 46.

PVR extraction
For the PVR determination, we first extract the zero-field normal-state 
resistance by fitting the high-temperature part of the data with a 
straight line RN(T) = aT + b, where a and b are parameters. For a given 
threshold p (p = 10%, 20%, 30%), we find the intersection of the zero-field 
resistance curve with pRN(T). The resistance at this intersection is 
denoted Rp

N. The intersection also defines the zero-field critical tem-
perature T (0)p

c . The data points in Fig. 2b, d are constant-resistance 
contours corresponding to RN

10%, RN
20% and RN

30%, respectively.
Because each contour roughly follows ( )T T α B= (0) 1 −p

pc
2  from 

T (0)p
c   down to the lowest temperature we can measure, we fit the points 

in each contour to this formula (αp is a fitting parameter) and obtain 
the zero-temperature critical field through extrapolation, towards the 
point at which the contour would intercept the T = 0 axis. This is given 
by B α(0) =p

pc
−1/2 . The corresponding PVR is then calculated as 

PVR = B (0)p
c /(1.86 T/K × T (0)p

c ). We performed this procedure indepen-
dently for each ν and p = 10%, 20%, 30% and plotted the result in Fig. 2e. 
We find that the choice of the threshold percentage makes no qualita-
tive difference in the extracted PVR.

Additional Pauli-limit violation data
We observed large Pauli-limit violation in other superconducting regions 
of the main device under study, as well as in two other devices. Extended 
Data Fig. 1 shows the Pauli-limit violation at representative densities and 
displacement fields in the ν = +2 − δ and ν = +2 + δ superconducting domes, 
on the electron-doping side of charge neutrality. From the 10%, 20% and 
30% normal-state resistance contours, we extract critical  
magnetic fields B (0)c

10%  = 3.99 T, B (0)c
20%  = 4.39 T and B (0)c

30%  = 4.93 T for  
ν = +2 − δ (Extended Data Fig. 1a), and B (0)c

10%  = 7.24 T, B (0)c
20%  = 8.31 T 

and B (0)c
30%  = 10.45 T for ν = +2 + δ (Extended Data Fig. 1b). These values 

correspond to PVRs of 3.44, 2.98 and 2.83 for +2 − δ and 2.49, 2.37 and 
2.65 for +2 + δ, extracted using 10%, 20% and 30%, respectively.

Extended Data Figure 2 shows the Pauli-limit violation in two other 
MATTG devices we measured, device B and device C (the main device 
shown in the main text is denoted device A). Following the same extrac-
tion procedure as above, we obtain zero-temperature critical magnetic 
fields B (0)c

10%  = 2.87 T, B (0)c
20%  = 3.04 T and B (0)c

30%  = 3.25 T for device 
B (Extended Data Fig. 2a), and B (0)c

10%  = 3.35 T, B (0)c
20%  = 3.46 T and 

B (0)c
30%  = 3.56 T for device C (Extended Data Fig. 2b). This gives PVRs 

of 2.13, 2.00 and 2.00 for device B, and 2.29, 2.23 and 2.19 for device C, 
extracted using 10%, 20% and 30%, respectively.

Combining these data, we conclude that the large Pauli-limit viola-
tion (twofold to threefold) is a universal feature in MATTG supercon-
ductivity. This suggests that the Pauli-limit violation is likely to be an 
intrinsic property of the superconductivity, and may point towards 
an unconventional spin configuration, as discussed in the main text.

Field-induced transition between SC-I and SC-II
To further investigate the nature of the transition between SC-I and 
SC-II phases, we performed bidirectional sweeps in B( while keeping 
ν, D and T fixed. We find that the resistance measured while scanning 



up B( is considerably different from the resistance measured while 
scanning down, showing a hysteresis. However, the behaviour seems 
to be very sensitive to the measurement environment and varies from 
scan to scan. Extended Data Fig. 3b, c shows two such scans at ν = −2.4, 
D/ε0 = −0.24 V nm−1 and T = 0.3 K. The only difference between the two 
scans is that the coaxial cables that connect from the cryostat to the 
lock-in amplifiers are rearranged. In the first scan, the scan-up and 
scan-down curves are clearly offset in B(. In the second scan, the peak 
amplitude shows a considerable difference, while no offset in B( is seen. 
We point out that the instability shown in Extended Data Fig. 3b, c occurs 
only when sweeping the magnetic field up and down, while fixing tem-
perature, density, and displacement field. The data shown in Fig. 4a, 
b, d, on the other hand, are taken while scanning displacement field/
density as the fast axis and the magnetic field as the slow axis, from 
high to low fields. These measurements are fully reproducible and do 
not show any hysteresis.

We believe that the observation of hysteretic behaviour—as well as the 
extreme sensitivity to environmental disturbances—is evidence that the 
transition is of a first-order nature, as first-order transitions typically 
have accompanying hysteresis and/or instability. Common examples 
include the liquid–gas and liquid–solid transitions. When a system is 
in the instability region, it is usually very sensitive to environmental 
disturbances (for example, supercooled water). In our case, changing 
the sample cables could be slightly altering the electromagnetic noise 
that is coupled to the unstable superconducting state, and thus could 
change the hysteretic behaviour. One possible scenario is that SC-I and 
SC-II are of different spin-triplet order parameters, and SC-II is stabi-
lized by a high magnetic field and separated from SC-I by a first-order 
transition, similar to the A and B phases in helium-3. Further studies are 
necessary to determine the precise nature of these phases.

We also noted that there are smaller islands in Fig. 4a between SC-I 
and SC-II phases. Extended Data Fig. 3d shows the same measurement 
performed on the positive D side, showing that although SC-I and SC-II 
phases are still present, the shape of the ‘filaments’ and the positions 
of the islands have considerably shifted in D and B(. These islands may 
indicate the onset of additional re-entrant states, which could perhaps 
be attributed to an admixture state of the SC-I and SC-II phases, or could 
also be a signature of new superconducting phases that exist only in a 
narrow range at finite B(.

PVR versus D
Extended Data Figure 4 shows the displacement field dependence of 
the PVR. Here the PVR represents only the extrapolated B p

c
(0) over the 

corresponding Pauli limit in the SC-I phase. In this extraction we have 
used the resistance at T = 4 K and B( = 0 as the normal resistance instead 
of the linear fit as described above. As can be seen, the plot of PVR ver-
sus D consistently shows values greater than 2 regardless of the thresh-
old chosen. Therefore, we can conclude that the large PVR in MATTG 
is ubiquitous within the superconducting dome.

In general, we find that the behaviour of the PVR is largely symmet-
ric with respect to the sign of D. The reason we chose D = −0.41 V nm−1 
(near optimal displacement field) for Fig. 2 is that the re-entrant phase 
is not prominent below 10 T, so a well-defined PVR (for SC-I) can be 
extracted. For the re-entrant phase (SC-II), Fig. 3 shows D = −0.31 V nm−1 
as a representative displacement field, but it is clearly visible across a 
wide range of displacement fields, as can be seen in the cuts in Fig. 4d.

Comparison between MATBG and MATTG
We note that no detailed measurements of the Pauli limit have been 
performed in MATBG near optimal doping and, because the in-plane 
critical field is anisotropic, a finite Pauli-limit violation—between 20% 
and 50%—might be likely based on the preliminary data shown in ref. 27.  
Although there are certainly many similarities between these two sys-
tems, there are still several important differences, including the pres-
ence of a pristine Dirac band in MATTG that hybridizes with the flat band 

upon the application of electric displacement field, and the presence 
of the mirror symmetry in MATTG, which is absent in MATBG. This 
mirror symmetry in MATTG makes the orbital in-plane effects different 
from those in MATBG: because the magnetic field is an axial vector, it 
behaves differently under mirror symmetry for the bottom-middle 
layers and for the middle-top layers. This might contribute to the appar-
ently smaller violation of the Pauli limit in the bilayer case, although 
this mechanism needs more experimental work to be fully verified. 
The mirror symmetry would be broken when a displacement field is 
applied, or when the top and bottom twist angles are slightly different. 
However, if the displacement field or twist angle difference is not too 
large, the mirror-symmetric physical arrangement in MATTG can still 
offer a limited degree of protection against the in-plane magnetic field 
(that is, intuitively, the magnetic flux through the top two layers and 
the bottom two layers partially cancel), whereas in MATBG this effect 
is completely absent because there is no mirror symmetry.

Another possibility is that MATBG and MATTG have different super-
conducting order parameters due to differences in details of materials 
parameters (for example, bandwidth or shape of Fermi surface). Theo-
retically, it is known that for superconductors in which interactions 
have a prominent role—which is likely to be the case for both MATBG 
and MATTG—the spin-singlet and spin-triplet ground states are nearly 
degenerate (see for example, refs. 20,47–49). The preferred state is then 
determined by the sign of a small Hund’s coupling term, and therefore it 
is entirely plausible in such a scenario in which MATTG adopts the triplet 
pairing while MATBG adopts the singlet pairing. Future experiments 
and theoretical work that can determine the exact order parameters 
for either system will be of great interest.

Estimation of in-plane critical field due to formation of vortices
In order for the in-plane field to suppress the superconductivity in 
MATTG by forming vortices, these vortices have to form parallel to the 
layers and in between the graphene layers, and the vortex spacing needs 
to be equal to or less than the coherence length. Because the coherence 
length was determined to be almost the same as interparticle distance4, 
we can set this condition as B(da ≈ φ0, where d ≈ 1 nm is the thickness of 
MATTG, a ≈ 10 nm is the moiré wavelength in MATTG and φ0 = h/(2e) is 
the superconducting flux quantum, where h is Planck’s constant and e 
is the elementary charge. This gives an estimate of B( ≈ 200 T, which we 
described as ‘well above 100 T’ in the main text. Although the specific 
numbers may vary slightly if we included precise values, this should 
give the order of magnitude of the orbital effect because of the forma-
tion of in-plane vortices in MATTG.

Further discussion on the possible effect of spin-obit coupling
Whereas graphene and derived systems are known to have weak intrin-
sic spin–orbit coupling (up to tens of µV), as yet there is no detailed 
study of SOC in MATTG or MATBG specifically, and hence a more 
detailed discussion of its possible effects is warranted. Although SOC 
has been shown to enhance the Pauli limit in certain systems containing 
transition metals or lanthanides, it is unlikely that SOC can account for 
the observed Pauli-limit violation or re-entrant superconductivity in 
MATTG. We discuss some of the possible scenarios below.

First, the SOC in graphene systems is inherently small. The intrinsic 
SOC in monolayer graphene was recently measured34 to be around 40 µV,  
and in Bernal stacked bilayer graphene it is also 40 µV at zero D, 
which increases to 80 µV at finite D35. We note that the authors do not 
attribute the D dependence to an intrinsic enhancement, but rather 
to a proximity-induced enhancement by the substrate. In the case of 
MATTG, superconductivity persists at optimal doping and displace-
ment field up to fields well in excess of 10 T. This means that the relevant 
spin–orbit coupling energy that would be necessary to explain the 
observations in MATTG would have to be greater than 1.2 meV (the  
Zeeman spin splitting at 10 T), which is more than a factor of 30 larger 
than the SOC energy scale in graphene. In that sense, if the SOC in MATTG 
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were to be of the same order as in the above references (40–80 µV),  
it would indeed be negligible. It is difficult to naturally assume that 
SOC will be substantial in MATTG, compared to monolayer or bilayer 
graphene. One possible question could be whether the flat bands might 
enhance SOC in the system. If this was the case, the same argument 
should be applicable to MATBG as well, as the flat bands in MATBG 
are in fact flatter than those in MATTG. However, experiments so 
far do not show Pauli-limit violation in MATBG comparable to that  
in MATTG.

The enhancement of the critical magnetic field much beyond the 
Pauli limit through the mechanism of SOC requires an antisymmetric 
SOC term (analogous to the Rashba term)37,50,51, which is present only 
when inversion symmetry is broken. Because MATTG is centrosym-
metric (at zero displacement field), we would expect no Pauli violation 
at zero D. However, the PVR at zero D is around 3. Moreover, we do not 
observe a strong dependence of PVR with D, as shown in Extended Data 
Fig. 4. Conversely, by a similar argument, because MATBG does not have 
inversion symmetry, its critical in-plane magnetic field would have 
been enhanced by the antisymmetric SOC term more than in MATTG; 
however, this is not experimentally observed.

One remote possibility is that the top and bottom layers experience 
an asymmetric local chemical environment, and therefore the system 
could be non-centrosymmetric in a layer-specific sense. This effect 
is what leads to Pauli-limit violation in heavy-fermion superlattices 
consisting of CeCoIn5/YbCoIn5 layers52, due to the Rashba-type SOC 
at each interface. However, a key requirement in such a scenario is 
the weak interlayer coupling, because the coupling between oppo-
site interfaces restores the inversion symmetry and the SOC term will 
cancel each other. In MATTG, it is known that the flat bands are a result 
of mirror-symmetric combination of all three layers23–26, and the elec-
tronic states in the flat bands are highly layer-hybridized. Therefore, it 
is unlikely that this local interfacial symmetry breaking is responsible 
for an enhanced Rashba SOC and the Pauli-limit violation.

In principle, disorder and impurities can also act as centres for inver-
sion symmetry breaking, resulting in a spin–orbit scattering mecha-
nism (see for example, ref. 53). However, we have observed the largest 
Pauli violation ratios in the highest quality (less disordered) device (out 
of three devices we measured). The other two devices, which were more 
disordered, had PVRs closer to 2. We also point out that disorder and 
impurities are also present in regular monolayer and bilayer graphene 
devices, but no enhanced SOC has been measured in such devices.

One more possibility that we are aware of is the effect of Van 
Vleck-type magnetic susceptibility, which dominates over the Pauli 
susceptibility in spin–orbit split Fermi surfaces and does not have a 
Pauli-limiting effect37. Here, it is required that the SOC energy is much 
larger than the superconducting gap. Although the exact gap size of 
MATTG is unknown, a BCS estimate using Tc would be around 0.45 meV 
(in fact, it could be much higher than this owing to its strong coupling 
nature), and for the SOC energy to be much larger than this—again, there 
should be more than an order of magnitude enhancement compared 
with bare graphene values. The same reasoning as above makes this 
an unlikely case.

Finally, to the best of our knowledge, SOC cannot account for the 
re-entrant behaviour. The observation of a re-entrant phase suggests 
that a new phase is stabilized only at high magnetic fields. A spin-singlet 
state might have its critical magnetic field enhanced by SOC, but will not 
be further stabilized by the magnetic field. The re-entrant phase is also 
unlikely to be similar to the topological superconductivity created by 
an s-wave superconductor in contact with a semiconductor with strong 
SOC, where the magnetic field would first close the trivial bulk gap and 
reopen a topological gap. In two-dimensional systems, the combination 
of Rashba SOC, s-wave superconductivity and in-plane field cannot 
generate a gapped topological phase54. More exotic mechanisms that 
involve both Rashba and Dresselhaus SOC combined with an in-plane 
field55 can possibly give rise to a topological phase, but it is unlikely to 

occur in the present system of inversion-symmetric MATTG, because 
the Dresselhaus SOC term requires broken inversion symmetry as well.

In summary, the most common pathways for the SOC enhance-
ment of the Pauli limit do not account for the Pauli-limit violation 
and re-entrant superconductivity observed in MATTG, whereas the 
spin-triplet scenario can account for these findings more naturally.

Assumptions for the Pauli limit
The Pauli limit is estimated by assuming the electron g-factor of 2 and 
a weak coupling strength between the electrons. Although recent 
electron spin resonance experiments56 have measured the electron 
g-factor in monolayer graphene to be extremely close to 2, a sizable SOC 
could modify the g-factor. SOC typically enhances the g-factor, which 
would rather decrease the critical magnetic field below the Pauli limit. 
Moreover, due to the same argument above, if the g-factor modification 
due to SOC is the cause for the Pauli-limit violation, it should occur in 
MATBG as well, which is not experimentally observed. The g-factor 
can also be enhanced in strongly interacting systems57–59, but again, 
such enhancement would show as an apparent decrease of the critical 
magnetic field—that is, the opposite of what we observe. Therefore, we 
believe that a modification of the g-factor is an unlikely cause for the 
observed Pauli-limit violation.

In the strongly coupled regime, the superconducting gap ∆ is no 
longer proportional to the Tc and can greatly exceed the BCS value of 
1.76kBTc. Because the Pauli limit is calculated on the basis of the BCS 
value, the critical magnetic field can therefore greatly exceed it in this 
case. If our observed Pauli-limit violation is due to strong coupling, the 
violation should be largest at the doping and displacement field with 
the strongest coupling. In our case, however, although the strongest 
coupling region is found at about ν ≈ −2.4 (ref. 4), the PVR is not at a 
maximum there but rather at ν ≈ −2.26. Furthermore, we find the Pauli 
limit to be also violated by more than a factor of two even in the density 
and displacement field regions in the weak-coupling regime (for exam-
ple, near the edge of the superconducting domes, where TBKT/TF is an 
order of magnitude smaller than at optimal doping/field). Therefore, 
strong-coupling alone cannot explain our experimental findings.

In a different study60, we estimated the superconducting gap ∆ in 
MATBG by performing edge-type tunnelling spectroscopy. However, at 
this point the data cannot determine quantitatively to what extent the 
weak-coupling assumption holds in MATBG or MATTG. In ref. 60, kBTc/∆ 
is not found to greatly exceed the BCS value, but the measurement is 
not meant to be interpreted at a quantitative level to give a conclusion 
on this, owing to limitations of the edge-type tunnelling spectroscopy 
that we performed. Dedicated experiments in the future using scan-
ning tunnelling spectroscopy or planar tunnelling could help to make 
more quantitative estimates for the superconducting order parameter.

Possible effects of valley pair-breaking
As we noted in ref. 27, an in-plane field causes pair-breaking for an 
inter-valley pairing state, analogous to the Zeeman effect. However, 
the valley pair-breaking energy is highly anisotropic and changes sign 
along the Fermi surface27. When the spin effect is also considered (that 
is, for a spin-singlet inter-valley pairing state), the Zeeman effect (which 
is more isotropic along the Fermi surface) is boosted by the valley effect 
on some parts of the Fermi surface, and counteracted on other parts 
of it. These two effects do not directly add up or cancel one another, 
because their effects on the Fermi surface have different symmetries. 
When we consider the momentum-averaged paramagnetic limit (which 
is determined by the average magnetic susceptibility in the supercon-
ducting state), the total depairing effect will be typically larger than 
either of them (Zeeman-only or valley-only), and thus further reduce 
the critical magnetic field.

To see this, we consider the following toy model. We assume the 
Zeeman depairing energy per unit magnetic field εZ = 2µ0µB to  
be independent of momentum, and the valley depairing energy, εV,  



to be dependent on the azimuthal angle of momentum θk. We  
used for this a simplified form that captures the essence of the  
argument (that is, captures the correct sign changes, see ref. 27), 

ε k ε θ( ) = = cos 2E k B E k B
B kV

[ ( , ) − (− , )]
V

K K′
, where EK and EK′ are the single- 

particle energies of K and K′ electrons at momentum k/−k and magnetic 
field B. We assume that the magnetic field is pointing towards  
the x direction. The momentum k here is defined with respect to  
the mini-Brillouin zone centre. The total depairing energy per  
unit magnetic field for a spin-singlet inter-valley pairing state is  
ε k E k B E k B B ε ε θ( ) = [ ( , ) − ( − , )]/ = + cos 2K K
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Z V . The paramag-
netic susceptibility in this case can be calculated as χ ε=

N µ(0)
2 depair

B   
in analogy to the Pauli paramagnetism, where N(0) is the density of 
states on the Fermi surface (assumed to be constant) and εdepair   
is the momentum-averaged depairing energy defined as 

∫ε θ ε k= d ( )kdepair
1

2π depair . Note the absolute value here, because for 
spin paramagnetism the susceptibility at any given momentum is 
always positive (spins always adopt the orientation with lower energy). 
To find the critical magnetic field, we set the total paramagnetic energy 

χB
µ
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2
2

0
2   to be equal with the superconducting condensation energy FC, 

which yields the critical field B µ= 2c
F

µ N ε0 (0)B

C

depair
.

If we set εV = 0, then ε ε=depair Z and the above formula recovers the 
Pauli limit BP. Extended Data Fig. 8 shows ε ε/depair Z as a function of εV/εZ. 
In this model the total pair-breaking effect is always stronger than if 
only the Zeeman or only the valley effect is present. Therefore, the 
resulting in-plane critical field Bc for such a state will be reduced from 
BP (corresponding to Zeeman-only). For these reasons, we do not think 
that a spin-singlet inter-valley state can possibly account for the large 
Pauli-limit violation in our data. The Zeeman effect needs to be sup-
pressed (which implies a spin-triplet state if there is no substantial 
SOC), and the valley depairing effect has to be sufficiently small, in 
order to account for a critical magnetic field that exceeds the  
Pauli limit.

Possible origin of the multiple steps in the dVxx/dI–I curves
The dVxx/dI–I characteristics shown in Fig. 3e exhibit several small steps 
before the tall dVxx/dI peak, indicating a small increase in dissipation 
before the full actual switching. We do not currently have a detailed 
understanding of these steps, but these are often also seen in other 2D 
superconductors, as demonstrated in our previous work on MATBG 
and monolayer WTe2 (see for example, ref. 61). Recent work on gated 
2D superconductors62 has attributed this small dissipation to vortex 
flow dynamics at finite current density, indicating that it is related to 
2D BKT physics, and this might also be the case also for our devices.
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Extended Data Fig. 1 | Pauli-limit violation for electron doping. a, B(–T 
phase diagram at the stated density in the +2 − δ superconducting dome.  
The extracted Pauli-limit violation ratios using 10%, 20% and 30% of normal 
resistance as the threshold are 3.44, 2.98 and 2.83, respectively. b, B'–T phase 
diagram at a density in the +2 + δ superconducting dome. The extracted 

Pauli-limit violation ratios using 10%, 20% and 30% of normal resistance as the 
threshold are 2.49, 2.37 and 2.65 respectively. The solid lines show the fit to the 
Ginzburg–Landau expression T α B∝ 1 − 2, and the colour tick marks at T = 0 show 
the corresponding Pauli limit, the same as in Fig. 2.



Extended Data Fig. 2 | Pauli-limit violation in other devices. a, B(–T phase 
diagram of device B with twist angle θ ≈ 1.44°. The extracted Pauli-limit 
violation ratios using 10%, 20% and 30% of the normal-state resistance as the 
threshold are 2.13, 2.00 and 2.00, respectively. b, B(–T phase diagram of device 
C with twist angle θ ≈ 1.4°. The extracted Pauli-limit violation ratios using 10%, 

20% and 30% of the normal state resistance as the threshold are 2.29, 2.23 and 
2.19, respectively. The solid lines show the fit to the Ginzburg–Landau 
expression T α B∝ 1 − 2, and the colour tick marks at T = 0 show the 
corresponding Pauli limit, the same as in Fig. 2.
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Extended Data Fig. 3 | Additional data on the high-field phases. a, B(–D map 
of resistance at a lower temperature T = 0.3 K (see Fig. 4a for comparison).  
The filament-like transition between SC-I and SC-II is much less pronounced.  
b, c, Bidirectional sweeps in B( at fixed D indicated by the white dashed line in a. 

The only change in measurement conditions between the two scans is a 
different arrangement of the BNC cables connecting to the lock-in amplifiers. 
Both scans are performed at 0.3 K. d, B(–D map of resistance on the positive D 
side measured at T = 0.4 K (see Fig. 4a for comparison).



Extended Data Fig. 4 | Extracted PVR as a function of displacement field at 
ν = −2.4. Values of 10%, 20% and 30% normal-state resistance were used as the 
threshold.
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Extended Data Fig. 5 | Schematic of measurement setup and images of the 
main MATTG device from optical microscopy and atomic force 
microscopy. The microscopy image shows that the core region of the device 

(inside the dashed rectangle) is clean and free of bubbles. The blue lines are the 
outlines of the Hall bar that were subsequently etched out.



Extended Data Fig. 6 | Calibration of the perpendicular component using 
the X axis magnetic field Bx. Calibration curves are shown for B( = 0 T, 5 T and 
10 T. The dashed lines indicate the calibrated zero perpendicular field 

condition at each B(. The grey bar spans ±5 mT from the centre of the curves, 
showing that the minimum can be determined well within the bars. 
See Methods for more details.
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Extended Data Fig. 7 | Superconducting phases in a perpendicular 
magnetic field. All measurements are taken at ν = −2.4, D/ε0 = −0.31 V nm−1.  
a, The suppression of SC-I and SC-II phases by a perpendicular field B) at T = 0.4 K. 

The white dashed line denotes zero B). This rules out the possibility that the 
SC-II phase is due to imperfect sample alignment with the axis of B∥. b–e, Map of 
dVxx/dI versus I and B) at four different in-plane fields, measured at T = 0.25 K.



Extended Data Fig. 8 | Depairing energy for a spin-singlet inter-valley 
pairing state, calculated for a simple toy model. The orange curve shows the 
total depairing energy averaged over the Fermi surface εdepair, versus the valley 
depairing energy amplitude εV. Both quantities are normalized by the Zeeman 
depairing energy εZ. For comparison, the dashed lines show the cases when the 
Zeeman effect is omitted (blue dashed line) and when the valley depairing 
effect is omitted (purple dashed line). Regardless of εV/εZ, the total depairing 
effect is always stronger than the valley-only or the Zeeman-only case, which 
means that the critical magnetic field will be reduced from the Pauli limit 
(corresponding to the Zeeman-only case). Therefore it is unlikely that a 
spin-singlet inter-valley pairing state accounts for our experimental results.


