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Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we
demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed
polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in
a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity
metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key
generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate
photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-
secure communications networks.
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I. INTRODUCTION

Quantum key distribution (QKD) remains the only
quantum-resistant method of sending secret information
at a distance [1,2]. The first QKD system ever devised used
polarization of photons to encode information [3,4]. QKD
has since progressed rapidly to several deployed systems
that can reach point-to-point secret key generation rates in
upwards of 100 kbps [5–8] and to other photonic degrees
of freedom: time [9–12], frequency [13–16], phase [17],
quadrature [18–21], and orbital angular momentum [22].
While polarization remains an attractive choice for
free-space QKD due to its robustness against turbulence
[23–28], polarization is commonly thought to be unstable
for fiber-based QKD. For this reason, there has been strong
interest in translating the polarization QKD components
into photonic integrated circuits (PICs), which provide a
compact and phase-stable platform capable of correcting
for polarization drifts in the channel. Recently, silicon-
based polarization QKD encoders were used for laboratory
QKD demonstrations [29,30], but their performance

advantage over standard telecommunication components
has yet to be demonstrated. Here we report the first field
tests using a high-speed silicon photonics-based encoder
for polarization-encoded QKD.
The silicon photonics platform allows for the integration

of multiple high-speed photonic operations into a single
compact circuit [31–34]. Operating at gigahertz bandwidth, a
silicon photonics polarization QKD encoder can correct for
polarization drifts with typical millisecond timescales in a
metropolitan-scale fiber link. Furthermore, silicon nano-
photonic devices are compatible with the existing comple-
mentary metal-oxide-semiconductor (CMOS) processes that
have enabled monolithic integration of photonics and elec-
tronics, possibly leading to future widespread utilization
of QKD.
The QKD encoder demonstrated here is manufactured

using a CMOS-compatible process. The encoder combines
a 10-Gbps Mach-Zehnder modulator (MZM) with inter-
leaved grating couplers, which convert the polarization of a
photon in an optical fiber into the path the photon takes
in the integrated circuit, and vice versa. The high-speed
polarization control is enabled by electro-optic carrier
depletion modulation within the MZM [35]. We show
the performance of the device in a local field test and an
intercity field test. With a clock rate of 625 MHz, we
generated secret keys at a rate of 1.039 Mbps and observed
a bit error rate of 2% in the local test between two
neighboring buildings connected by a 103.6-m fiber (with
an additional 9 dB emulated loss). In the 43-km (16.4-dB
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channel loss) intercity test between the cities of Cambridge
and Lexington, we generated secret keys at a rate of
157 kbps and observed a bit error rate 2.8%. Both QKD
operations are demonstrated to be secure against collective
attacks in a composable security framework with a tight
security parameter of εsec ¼ 10−10. Our results demonstrate
how silicon photonics—supported by the currently existing
CMOS technology—can pave the way for a high-speed
metropolitan-scale quantum communication network.

II. SILICON PHOTONICS ENCODER

Our QKD encoder and its cross section are shown in
Figs. 1(a)–1(c). Light is coupled in and out of the encoder
using a standard fiber V-groove array of 250-μm pitch.
Owing to the large index contrast between the silicon layer
and the buried oxide, the encoder is compact within a total
area of 0.75 × 1.5 mm2. Polarization grating couplers are
used to convert between polarization encoding in the input-
output fibers and path encoding within the PIC. The unitary
transformation is similar to that of a polarizing beam splitter
(PBS).Within the PIC, the photons’ paths—and their relative
phases—aremanipulated using aMZMwith two internal and
two external electro-optic phase modulators, which in turn
manipulate the photon polarization in the output fiber.
The input polarization grating coupler separates light

from the horizontal and vertical polarizations onto two
different paths, both in the transverse-electric (TE) polari-
zation: with its electric field oscillating parallel to the chip

surface [36]. Any light inadvertently converted into the
transverse-magnetic (TM) polarization in these waveguides
is greatly attenuated by the phase modulators, which
strongly support higher transmission in TE polarization
over TM polarization. The grating coupler is a square array
of holes, with 20 holes of lattice period of 575 nm in each
direction. We measured ∼10 dB loss through the grating
coupler at our operating wavelength of 1480 nm. Although
this loss is higher than that of typical silicon-on-insulator
grating couplers at ∼3 dB [37], the polarization grating
coupler is suitable as an encoder for a QKD transmitter,
where an average photon number per pulse of less than one is
required for secure key distribution.
The electro-optic phase modulators in the MZM are

based on depletion-mode free-carrier dispersion from a
doped p-i-n junction superimposed on the optical mode
[38,39]. The overlap between the optical mode and the free
carriers results in free-carrier refraction [40], which can be
controlled with gigahertz rf signals to achieve high-speed
phase modulation.
The polarization states generated by the silicon photon-

ics encoder have a purity of 1.000� 0.005, measured using
a polarimeter. In Fig. 1(d), the relative phases of the internal
phase shifters (Δθ) as well as the relative phases of the
external phase shifters (Δϕ) are swept with a reverse bias
voltage between 0 and 8 V. For this voltage range, the
polarization states lie on the surface of the Bloch sphere,
indicating that they remain pure throughout.

(a)

(d) (e) (f) (g)

(b)

(c)

FIG. 1. (a) Optical micrograph of the silicon photonics encoder, along with a scanning electron micrograph of the polarization grating
coupler. Only the inner three polarization grating couplers are parts of the encoder operation; the outer two couplers are present to help
alignment with a fiber V-groove array. (b) Schematic diagram of the MZM encoder. The device uses two internal and two external
electro-optic phase modulators, each of length 1.5 mm. (c) Schematic of the cross-sectional layer stack of the encoder. (d) Bloch sphere
representation of the polarization states generated by the encoder as the internal (Δθ) and the external (Δϕ) phase modulators are biased.
(e),(f) Polarization modulation with the silicon photonics polarization modulator as measured in the two relevant bases. Polarization
extinction ratio of more than 25 dB can be typically achieved. Negative voltage denotes reverse bias with regards to the doped p-i-n
junction. Measurements in the Z basis and X basis are shown in (e) and (f), respectively. (g) Eye diagram of 10-Gbps polarization
modulation in the Z basis: on state corresponds to jVi and off state corresponds to jHi.
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The Bennett-Brassard 1984 (BB84) QKD protocol
[3] requires Alice to prepare three quantum states: two
eigenstates of Z and an eigenstate of X [41,42]. Alice
randomly chooses the basis she prepares in. When
the Z basis is selected, Alice prepares either j0zi ¼ jHi
or j1zi ¼ jVi with equal probabilities of 1=2. Otherwise,
when the X basis is selected, Alice prepares the state
j0xi ¼ jDi ¼ ðjHi þ jViÞ= ffiffiffi

2
p

.
We prepared the three quantum states at high fidelity, as

shown in Figs. 1(e) and 1(f), with a polarization extinction
ratio better than 25 dB, which is required for low-error
QKD operations. The internal and external phase modu-
lators were configured to produce the state ðjti þ jbiÞ= ffiffiffi

2
p

,
which we take to be j0zi. rf signals of differing voltages
were applied to one of the external phase modulators to
generate ðjti þ eiϕjbiÞ= ffiffiffi

2
p

, where ϕ is the applied phase
shift. All of the three BB84 states can be generated by
applying the phase shifts ϕ ¼ 0, π=2, and π. The polari-
zation states were measured using a PBS followed by two
InGaAs photodiodes. A polarization controller before the
PBS allowed measurements in the two BB84 bases: the Z
basis and the X basis.

As shown in the eye diagram in Fig. 1(g), the phase
modulators allowed us to generate the polarization states at
10 Gbps. These measurements were acquired by using an
inline polarizer placed at the output of the encoder that
converts the polarization state jVi into an on state and the
polarization state jHi into an off state.When the encoder was
modulated at 6Gbps or lower, not a single errorwas observed
for a 5-min operation. At a 10-Gbps data rate, as shown here,
we measured a low error rate of 9.0 × 10−10 s−1.

III. FIELD TESTS

We performed two QKD field tests: a local test and an
intercity test. Figure 2 shows a map of the greater Boston
area, identifying the locations of Alice and Bob, together
with the experimental setups implementing the asymmetric
polarization-based BB84 protocol. Alice, located in the
Compton Laboratories at MIT for both field tests, prepares
the three polarization BB84 states at random. Bob measures
in either the Z basis or the X basis using four super-
conducting nanowire single-photon detectors (SNSPDs) at
a different location for each field test. He is located in the

(a)

(b)

FIG. 2. Aerial view of the intercity QKD field test. Alice is located at Massachusetts Institute of Technology (MIT) in Cambridge and
Bob is located at MIT Lincoln Laboratory in Lexington. Although the point-to-point distance between the two stations is ∼18 km, they
are connected by a 43-km dark fiber link. Alice consists of an attenuated laser source, an intensity modulator, and the silicon photonics
polarization encoder. Bob consists of two polarizing beam splitters (PBSs) followed by four superconducting nanowire single-photon
detectors (SNSPDs). Insets: (a) Close-up aerial view of the local QKD field test, where Alice and Bob are located in two adjacent
MIT buildings connected by a 103.6-m deployed dark fiber link. Alice’s and Bob’s setups are the same as the ones used in the intercity
test. (b) Fluctuations on the bit error rate with and without polarization feedback control, relative to the starting bit error rate. Imagery
©2017 Google. Map data from Google, Landsat/Copernicus.
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Fairchild Building for the local test and at MIT Lincoln
Laboratory in Lexington for the intercity test. Bob makes
his basis choices using the polarization controller placed
before each PBS.
Alice creates (not phase randomized) attenuated laser

pulses of width 800 ps at 1480 nm [43] with a 625-MHz
repetition rate. The pulses are modulated into the three
BB84 polarization states by the silicon photonics encoder.
Alice first calibrates for the polarization rotation through
the channel, and dc reverse voltage biases are applied to the
encoder such that the state jDi is generated by default. To
generate the states jHi and jVi, Alice applies synchronized
rf pulses with a full width at half maximum of 400 ps.
Phase randomization is achieved on the silicon photonics
chip by applying a random, common phase offset on both
external phase shifters [44]. To maximize the length of
secret keys generated, Alice chooses to prepare either in the
Z basis with a probability of 15=16 or in the X basis with a
probability of 1=16.
For the local test, Alice sends her prepared states to Bob

through a 103.6-m fiber link connecting the two labora-
tories. The loss through the link is 0.2 dB, and we emulated
longer fiber distances by installing a variable optical
attenuator before the channel. For the intercity test on
deployed fiber connecting Cambridge and Lexington, the
optical path length is 43 km long with 16.4-dB loss.
Bob detects the pulses he receives in either of the two

bases with 50% probability to maximize the number of
security-check events when the key-generating detectors
are saturated. For the local test, Bob uses four individual
WSi SNSPDs, each with a quantum efficiency greater than
85%, a timing resolution of ∼250 ps, a background dark
count rate of ∼1000 counts=s, and a saturation count rate
of ∼5 × 106 counts=s. For the intercity test, Bob uses
four NbN SNSPD systems, each consisting of four inter-
leaved NbN nanowires with a single optical fiber input
with a quantum efficiency of 60%. Because only two out
of the four interleaved nanowire outputs were used (due
to the limited number of time-to-digital converter chan-
nels), the effective quantum efficiency was 30%. The
timing resolution was ∼50 ps, the background dark count
rate was ∼1000 counts=s, and the saturation count rate was
∼200 × 106 counts=s.
Alice and Bob only generate secret keyswhen both parties

choose the Z basis. The quantum bit error rate ebit is
measured by checking the number of bits that have been
flipped between their raw bit strings. On the other hand, the
upper bound to the quantum phase error rate eUph can be
estimated from X-basis events along with the mismatched-
basis events, where Alice and Bob choose different prepa-
ration and measurement bases (see Appendix A) [41,42].
An automated polarization feedback system is placed in

the intercity channel between Alice and Bob, which can
drift significantly on the timescale of the experiment. To
correct for the drift, Alice sends a series of calibration

signals and optimizes her dc voltage biases such that the
error rate on both measurement bases is kept low. Single-
photon detectors with good detection efficiency, such as the
SNSPD systems above, are helpful for obtaining reliable
error signals when optimizing for the voltage biases. As
seen in Fig. 2(b), the relative fluctuations of ebit (relative to
its starting value) are limited to 2% with feedback, and to
about 50% without feedback.

IV. COMPOSABLE SECRET KEY GENERATION

Figure 3 shows the performance of the QKD encoder in
both field tests, in terms of the observed secret key rate
(SKR), ebit, and eUph. For clarity, we plotted the SKRs
against the channel loss and the equivalent fiber distance
assuming an optimistic fiber loss of 0.2 dB=km. We kept
the number of pulses sent from Alice to Bob at N ¼
2.81 × 1011 to maintain a uniform collection time of 450 s
for each experiment, and analyzed the composable security

FIG. 3. Top: Experimental SKRs at different channel losses.
The (blue) squares and upright triangles are asymptotic SKRs for
the local test and the 43-km metropolitan intercity test, respec-
tively. Similarly, the (red) circles and inverted triangles are the
SKRs calculated within the composable security framework with
εsec ¼ 10−10 for the local test and the metropolitan field test,
respectively. In the local tests, a variable attenuator is used to
provide higher attenuation beyond the channel’s 0.2-dB loss.
Solid and dashed lines correspond to numerical simulations of the
SKRs for the local test and the intercity test, respectively. Bottom:
Bit error rate (ebit) and upper bound to the phase error rate (eUph)
against channel attenuation. The symbols used here are the same
as the ones above.
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with a small security parameter of εsec ¼ 10−10—making
use of the novel Chernoff bound recently proposed
in Ref. [45].
For the local test, at a total channel attenuation of 9.2 dB,

we obtained a SKR of 1.039 Mbps using mean photon
numbers of 0.12, 0.012, and 0.003 for the signal and the
two decoy states, chosen with probabilities 2=3, 2=9, and
1=9, respectively. The mean photon numbers were kept low
to avoid detector saturation. The total channel attenuation
was further increased from 9.2 to 21.2 dB to simulate
longer fiber distances. We observed an average ebit of ∼2%,
except for the lowest channel attenuation where ebit is
higher at 3.97% as the WSi detectors are saturated. As
expected from theoretical simulations, the upper bound to
the phase error rate eUph increased from 7.09% to 18.01% as
we increased the channel attenuation.
For the metropolitan intercity test, we obtained a SKR of

157 kbps using mean photon numbers 0.5, 0.03, and 0.015
for the signal and the decoy states with the same proba-
bilities as above. Here the mean photon numbers could be
chosen higher while being well under the NbN detector
systems’ saturation point. We observed an ebit of 2.82% and
an eUph of 9.81% in this 43-km experiment.

V. DISCUSSION AND OUTLOOK

To illustrate the progress entailed by our results, we
summarize our work in Table I along with recent demon-
strations of high-speed polarization-based QKD and other

discrete-variable QKD field tests. Our work represents the
highest observed SKR for any polarization-based QKD
operations at comparable channel losses, and it performs
comparably to other state-of-the-art QKD field demonstra-
tions. It is also the first demonstration of the asymmetric
loss-tolerant BB84 QKD protocol with guaranteed security
against collective attacks [42]. The silicon photonics
platform has enabled us to design a compact encoder with
high-speed and high-fidelity operations using a CMOS-
compatible process. This points to the possibility of
low-cost and resilient QKD transmitters for metroscale
quantum-secure networks.
PICs offer opportunities for further integration for both

the transmitter and the receiver and for closing possible
security flaws and side-channel attacks. Dense wavelength-
division multiplexing has been one major thrust in classical
communications, and a compact solution is available in
silicon photonics by using an array of add-drop ring
resonators [48,49]. This scheme can be integrated with
our current QKD encoder design with only minimal
changes in the footprint. Furthermore, single photon
detectors have been integrated into silicon photonics
[50], showing the possibility of a compact QKD receiver.
Moreover, the configurability of the silicon photonics

platform allows for complex monitoring circuits that
protect against side-channel attacks [51]. For example, a
Trojan horse attack can be thwarted by placing watchdog
detectors in our silicon photonics chip [52,53]. Possible
detector vulnerabilities, such as the detector blinding attack

TABLE I. Comparison of high-rate polarization-based QKD experiments and other high-rate discrete-variable QKD field tests.

Reference
Clock rate
(MHz) λ (nm)

Fiber
length (km)

Loss
(dB)

SKR
(kbps)

SKR normalized
to 10 dB (kbps) Finite key εsec Protocol Notes

[46] 1000 850 4.2 9.24 130 109 Assumes asymptotic B92 Polarization, APDs,
VCSELs

[47] 625 850 1 2.2 2100 349 Assumes asymptotic B92 Polarization, APDs,
VCSELs

[29] 10 1550 � � � 0.0 0.95 0.10 Assumes asymptotic BB84 Polarization, APDs,
Si PIC

[30] 1000 1550 20 4.0 329 83 Assumes asymptotic BB84 Polarization, SNSPDs,
Si PIC

[5] 1000 1550 50† 14.5 304 857 Assumes asymptotic BB84 Time bin, APDs,
long term

[6] 1000 1547.72 22† 12.6 230 419 Assumes asymptotic BB84 Time bin, APDs,
long term

1550.92
[7] 1000 1550 45† 14.5 300 846 10−10 BB84 Time bin, APDs,

long term
This work 625 1480 0.1† + attenuator 9.2 1039 864

10−10 BB84
Polarization, SNSPDs,

Si PIC43† 16.4 157 685
†Dagger (†) represents a deployed fiber link. For each experiment, we also note the choice of photonic encoding, the choice of

single-photon detectors used, the use of integrated optics, and whether the trial was continuously operating for more than 24 h.
VCSELs, vertical-cavity surface-emitting lasers; APDs, avalanche photodiodes; SNSPDs, superconducting nanowire single-photon
detectors.
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[54,55], can be eliminated using the measurement-device-
independent (MDI) configuration [9,56,57].
PICs also offer new opportunities of quantum sources for

QKD applications. Heterogeneous bonding of active laser
III–V materials, such as indium phosphide (InP), onto the
silicon photonics QKD encoder would enable a fully
integrated silicon photonics QKD transmitter along with
the light source [58–61]. QKD transmitters based on InP
have been demonstrated [12]. Furthermore, the PIC plat-
form allows for the construction of identical ring resonators
of quality factor above 107 with lithographic precision [62].
The ring resonators, when operated as add-drop filters for
broadband light sources based on spontaneous emissions
whose phases are intrinsically random, can generate litho-
graphically defined indistinguishable light for MDI QKD.
Recent demonstrations of efficient spontaneous four-wave
mixing with silicon ring resonators also promise the
possibility of identical integrated single-photon sources
for MDI QKD [63–65].
In conclusion, we have demonstrated short-range and

metroscale QKD field tests using a silicon photonics chip,
reaching secret key rates of 1.039 Mbps and 157 kbps,
respectively. These are the first polarization-basedQKD field
tests on deployed fiber links, which were typically deemed
too unstable for high-fidelity transmission of polarization
states. The PIC platform provides a compact and phase-
stable platform for high-speed QKD that is well suited for
further scaling by wavelength division multiplexing.
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Note added.—Recently, we became aware of another
polarization-based QKD encoder using polarization grating
coupler that was developed independently [30].

APPENDIX A: PROTOCOL DESCRIPTION

We consider an asymmetric three-state BB84 protocol.
In particular, Alice randomly selects to prepare a qubit in
either the Z basis or the X basis with probabilities pA

Z and
pA
X ¼ 1 − pA

Z, respectively. Similarly, Bob independently
and randomly chooses to measure in either of the two
bases with probabilities pB

Z and pB
X ¼ 1 − pB

Z. In our
experiments, pA

Z ¼ 15=16, pA
X ¼ 1=16, pB

Z ¼ 1=2, and
pB
X ¼ 1=2. The mean photon number of each laser pulse

in the experiment is chosen randomly from three different
settings: μ1, μ2, μ3. They satisfy the relation μ1 > μ2 þ μ3
and μ2 > μ3 ≥ 0.
(1) Preparation.—For each laser pulse, Alice randomly

chooses the mean photon number hNi ∈ fμ1; μ2; μ3g
with probabilities pμ1 , pμ2 , and pμ3 ¼ 1 − pμ1 − pμ2 ,
respectively. Alice then selects the basis a ∈ fZ; Xg
with probabilities pA

Z and p
A
X ¼ 1 − pA

Z, respectively.
If she has selected the Z basis, then she randomly
sends either j0zi ¼ jHi or j1zi ¼ jVi to Bob with
equal probabilities. If the X basis was selected, she
sends the j0xi ¼ jDi to Bob. She records the bit
value of the state she has sent in x.

(2) Measurement.—Bob measures the signals he re-
ceived in the measurement basis b ∈ fZ; Xg with
probabilities pB

Z and pB
X ¼ 1 − pB

Z, respectively. Bob
performs the measurements with four single-photon
detectors (one per basis). He then records his
measurement as one of the four possible outcomes:
f0; 1;∅;⊥g. 0 and 1 are the bit values (H and V in
the Z basis, and D and A in the X basis), ∅
represents no detection, and ⊥ represents a double
detection. Bob records the outcome in y, and he
assigns a random bit value if a double detection is
observed.

(3) Basis reconciliation and sifting.—Alice and Bob
announce their bases and intensity choices over an
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authenticated public channel. They then place their
records into one of the following sets:
(a) key-generation sets:

Zμ ¼ fijai ¼ bi ¼ Z; hNii ¼ μ; yi ≠ ∅g;
(b) security-check sets:

Xμ ¼ fijai ¼ bi ¼ X; hNii ¼ μ; yi ≠ ∅g;
(c) mismatched-basis sets:

ZjXk
μ¼fijai¼Z;bi¼X;hNii¼μ;xi¼j;yi¼kg.

Steps 1–3 are repeated until the size of each set has reached a
certain length previously agreed by both parties. Alice and
Bob generate a raw key pair ðZA;ZBÞ by choosing a random
sample from the set Z ¼∪μ Zμ. Following Ref. [66], we
generate secret keys from all intensity settings.
(4) Parameter estimation.—Alice and Bob then

compute the bounds to the number of vacuum
and single-photon events within the set Z using
the security-check sets and the mismatched-basis
sets. Next, they estimate the number of phase errors
within the single-photon events, and check if the
phase error rate eUph is less than the predetermined
threshold value ephase;tol. If eUph > ephase;tol, then they
abort the protocol, otherwise they proceed.

(5) Postprocessing.—Alice and Bob perform error cor-
rection for ðZA;ZBÞ over their authenticated public
channel, revealing λEC bits. To verify that they have
identical secret keys, they compute a two-universal
hash function that publishes ⌈ log2 1=εcor⌉ bits. If
the protocol passes all the above steps, they then
perform privacy amplification to extract a secret key
pair ðKA;KBÞ with each key of length l bits.

APPENDIX B: SECURITY ANALYSIS

We consider the loss-tolerant asymmetric BB84 protocol
in the composable security framework [41,42]. A QKD
protocol is considered to be secure if it is both correct and
secret. The protocol is secret when the pair of keys KA
andKB are identical except for some small probability εcor;
i.e., Pr ½KA ≠ KB� ¼ εcor. The probability εcor is deter-
mined by the failure probability of the two-universal hash
function. Furthermore, the protocol is secret if the quantum
state ρKAE that describes the correlation between Alice’s
key and Eve’s quantum system is εsec close to ωKA

⊗ ρE,
where ωKA

describes a uniform distribution of all bit
strings. In other words,

1

2
kρKAE − ωKA

⊗ ρEk ≤ εsec: ðB1Þ

Within this composable security framework, the secret
key length is

l≥
�
mL

0 þmL
1 ½1−hðeUphÞ−ξhðebitÞ�− log2

4

ε2sec
− log2

2

εcor

�
;

ðB2Þ

where h is the binary entropy function, and mL
0 and mL

1 are
the lower bounds to the number detections due to vacuum
and single photons, respectively. eUph is an upper bound to
the phase error rate, which can be computed using the
methods outlined in Ref. [42]. ebit is the quantum bit error
rate for the key-generating basis, and ξ represents the error
correction inefficiency—set at 1.15 for our calculations.
For simplicity, we set all 17 failure probabilities related to
estimating mL

0 , m
L
1 , and eUph as ε ¼ ε2sec=17.

APPENDIX C: IMPROVED DECOY
STATE ANALYSIS

We take advantage of the improved decoy state analysis
[45] and apply them to obtain the security quantities mL

0 ,
mL

1 , and eUph [42].

1. Lower bound on vacuum contributions

We wish to calculate the value of mL
0 which is the

observed lower bound on the number of events where
(i) Alice generates a vacuum state with the signal intensity
setting μ1 in the Z basis and (ii) Bob detects in the Z basis.
First, let hm0iL be the lower bound on the average

number of such events:

hm0iL ¼ pμ1e
−μ1

μ2 − μ3

�
μ2eμ3

pμ3

hZiLμ3 −
μ3eμ2

μ2
hZiUμ2

�
; ðC1Þ

where the parameter hZiLðUÞ
μi is defined as the lower (upper)

bound on the expectation value of the number of detection
events when Alice chooses the basis setting Z at intensity μi
and Bob chooses the basis setting Z.
Alice and Bob, given the observed value jZjμi , can

calculate the confidence interval of the underlying expect-
ation value with the failure probability ε. Using the
Chernoff bound for independent Bernoulli binary random
variables χj ∈ f0; 1g, and defining χ ¼ P

n
j¼1 χj ≡ jZjμi

and hχi≡ hZiμi , we obtain

Pr ½jZjμi > ð1þ δLÞhZiμi � < gðδL; hZiμiÞ;
Pr ½jZjμi < ð1 − δUÞhZiμi � < gð−δU; hZiμiÞ; ðC2Þ

where gðδ; hχiÞ≡ ½ðeδÞ=ð1þ δÞ1þδ�h χi. We further define
hZiLμi≡jZjμi=ð1þδLÞ and hZiUμi ≡ jZjμi=ð1 − δUÞ, such that
the two equations [Eq. (C2)] above can be interpreted
as the probabilities that the expectation value deviates from
the confidence interval. We desire the two probabilities
to be small, i.e., upper bounded by some small failure
probability ε.
The confidence interval of the expectation value is then

obtained by (numerically) solving
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gðδL; hZiμiÞ ¼
ε

2

and gð−δU; hZiμiÞ ¼
ε

2
ðC3Þ

for δL and δU. For large values of hZiLμi ≥ 6β ¼ −6 lnðε=2Þ
(which is the case in our measurements), the solutions are
approximately [45]

δL ¼ δU ≈
3β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 8βjZjμi

q
2ðjZjμi − βÞ ; ðC4Þ

from which Alice and Bob can estimate the lower (upper)

bound hZiLðUÞ
μi .

From here, we can obtain a second confidence
interval for the observed value m0 using the symmetric
Chernoff bound:

Pr ½jm0 − hm0ij ≥ δhm0i� ≤ 2e−δ
2hm0i=ð2þδÞ ¼ ε; ðC5Þ

which can be rewritten to

Pr ½mL
0 ≤ m0 ≤ mU

0 � > 1 − ε; ðC6Þ

for

mL
0 ≡ ð1 − δÞhm0i;

mU
0 ≡ ð1þ δÞhm0i;

δ ¼ β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 8βhm0i

p
2hm0i

: ðC7Þ

However, since Alice and Bob can estimate only the
confidence interval of the expectation value hn0ðaxbyÞi ∈
½hn0ðaxbyÞiL; hn0ðaxbyÞiU�, they can only obtain worse
observed lower bound:

mL
0 ¼ ð1 − δÞhn0ðaxbyÞiL;

δ ¼ β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 8βhm0iL

p
2hm0iL

: ðC8Þ

2. Lower bound on single-photon contributions

Alice and Bob also need to obtain mL
1 , which is the

observed lower bound on the number of events where
(a) Alice generates a single-photon state with the signal
intensity setting μ1 in the Z basis and (b) Bob detects in the
Z basis.
Let hm1iL be the lower bound on the average number of

such events, then

hm1iL ¼ pμ1μ
2
1e

−μ1

ðμ2 − μ3Þðμ1 − μ2 − μ3Þ
�
eμ2

pμ2

hZiLμ2 −
eμ3

pμ3

hZiUμ3

þ μ22 − μ23
μ21

eμ1

pμ1

ðhm0iL − hZiUμ1Þ
�
: ðC9Þ

It is then straightforward to use the Chernoff bound analyses
outlined in Appendix C 1 to obtain the value of mL

1 .

3. Upper bound on phase error rate

To place an upper bound to the phase error rate (eUph),
Alice and Bob need to find the lower and upper bounds
to haxby; ki [42] which are the mean number of events
where (a) Alice generates a k-photon state (with k ∈ f0; 1g)
with the signal intensity setting μ1 in the basis setting
a ∈ fZ; Xg to encode bit value x ∈ f0; 1g and (b) Bob
measures bit y ∈ f0; 1g using basis setting b ∈ fZ; Xg.
These quantities are labeled as Decoy

k
ðax; byÞ and

Decoykðax; byÞ in Ref. [42].
Let jaxbyjμi be the observed number of events where

Alice prepares bit x in basis setting a and Bob detects bit y
in basis setting b. Then, we can obtain bounds on the mean
vacuum and single-photon contributions haxby; ki using
similar equations to Eqs. (C1) and (C9):

haxby; 0iL ¼ pμ1e
−μ1

μ2 − μ3

�
μ2eμ3

pμ3

haxbyiLμ3 −
μ3eμ2

μ2
haxbyiUμ2

�
;

haxby; 1iL ¼ pμ1μ
2
1e

−μ1

ðμ2 − μ3Þðμ1 − μ2 − μ3Þ

×

�
eμ2

pμ2

haxbyiLμ2 −
eμ3

pμ3

haxbyiUμ3

þ μ22 − μ23
μ21

eμ1

pμ1

ðhaxby; 0iL − haxbyiUμ1Þ
�
;

ðC10Þ

and

haxby; 1iU ¼ pμ1μ1e
−μ1

μ2 − μ3

�
eμ2

pμ2

haxbyiUμ2 −
eμ3

pμ3

haxbyiUμ3
�
:

ðC11Þ

To obtain the lower and upper bounds to the mean, i.e.,

haxbyiLðUÞ
μi , we can repeat the analysis in Sec. C 1 after

redefining χ ¼ P
n
j¼1 χj ≡ jaxbyjμi and hχi≡ haxbyiμi .

APPENDIX D: EXPERIMENTAL RAW COUNTS

The observed raw counts are tabulated in Table II.
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APPENDIX E: POLARIZATION-MODE-
EFFICIENT BB84 QKD WITH PHASE ENCODING

The same silicon photonics polarization QKD encoder
can be converted to realize polarization-mode-efficient
BB84 QKD with phase encoding [67]. In this scheme,
Alice encodes information in the phase of two consecutive
photon pulses in both polarizations. In this regard, the QKD
scheme is polarization-mode efficient because both modes

are used, and two bits of information can be generated per
transmission through the quantum channel.
Figure 4 shows a schematic of the phase-encoded QKD

system. Alice controls the intensity of the weak coherent
pulse in each polarization using an intensity modulator,
which controls the mean number of photons entering the
chip, and two internal phase modulators, which distribute
the photons between the horizontal and vertical polarization
modes. Adjusting the intensity modulator and the internal

TABLE II. Experimental raw counts observed during the local tests and the 43-km intercity test. The heading jaxbyjμi refers to the
recorded number of events where Alice prepares bit x with basis choice a∈fZ;Xg and Bob detects bit y with basis choice b∈fZ;Xg.
Channel
and loss μi jZ0Z0jμi jZ1Z0jμi jZ0Z1jμi jZ1Z1jμi jZ0X0jμi jZ1X0jμi jX0X0jμi jZ0X1jμi jZ1X1jμi jX0X1jμi
Local 0.12 6.44×108 2.68×107 2.49×107 5.77×108 2.92×108 3.04×108 7.38×107 3.18×108 2.40×108 3.80×106

9.2 dB 0.012 2.40×107 3.96×105 3.68×105 2.11×107 1.08×107 1.13×107 2.79×106 1.14×107 8.48×106 1.07×105

0.003 2.51×106 4.79×104 3.89×104 2.22×106 1.16×106 1.21×106 3.04×105 1.24×106 9.21×105 1.38×104

Local 0.12 3.05×108 6.47×106 7.52×106 2.90×108 1.35×108 1.45×108 3.59×107 1.45×108 1.23×108 1.48×106

12.2 dB 0.012 1.06×107 1.36×105 1.60×105 1.02×107 4.89×106 5.22×106 1.31×106 5.17×106 4.35×106 5.65×104

0.003 1.13×106 2.35×104 2.13×104 1.03×106 5.12×105 5.60×105 1.37×105 5.51×105 4.75×105 8.99×103

Local 0.12 1.57×108 2.55×106 3.10×106 1.49×108 7.05×107 7.51×107 1.87×107 7.42×107 6.29×107 7.55×105

15.2 dB 0.012 6.80×106 8.90×104 1.01×105 6.34×106 3.06×106 3.25×106 8.02×105 3.20×106 2.71×106 3.56×104

0.003 6.24×105 2.08×104 1.67×104 5.68×105 2.90×105 2.98×105 7.32×104 3.08×105 2.72×105 6.85×103

Local 0.12 7.67×107 9.43×105 1.88×106 6.34×107 3.08×107 3.08×107 7.52×106 2.53×107 2.03×107 1.82×105

18.2 dB 0.012 2.70×106 5.78×104 1.80×105 2.32×106 1.49×106 1.50×106 3.11×105 8.81×105 7.06×105 4.75×103

0.003 2.76×105 1.85×104 7.31×104 2.76×105 3.32×105 3.34×105 5.31×104 9.26×104 7.21×104 1.34×103

Local 0.12 3.72×107 4.46×105 1.05×106 3.07×107 1.58×107 1.58×107 3.71×106 1.22×107 9.75×106 8.37×104

21.2 dB 0.012 1.58×106 4.35×104 1.67×105 1.41×106 1.07×106 1.07×106 2.08×105 5.11×105 4.20×105 4.37×103

0.003 1.72×105 1.97×104 7.42×104 2.00×105 2.80×105 2.86×105 4.47×104 5.84×104 4.46×104 1.28×103

Intercity 0.5 1.47×108 4.31×106 2.89×106 1.08×108 4.24×107 4.79×107 1.03×107 4.85×107 3.38×107 5.03×105

16.4 dB 0.03 3.51×106 1.88×105 1.15×105 2.22×106 8.94×105 1.08×106 2.35×105 1.30×106 6.74×105 1.20×104

0.015 6.85×105 6.75×104 4.76×104 4.98×105 2.05×105 2.43×105 4.93×104 2.38×105 1.52×105 4.14×103

FIG. 4. Schematic diagram of polarization-mode-efficient phase-encoded BB84 QKD which encodes information in both polar-
izations using the silicon photonics QKD encoder. Alice encodes information in both polarization modes using a single silicon photonics
encoder. Bob, on the other hand, uses another copy of the silicon photonics chip to undo the polarization unitary transformation of the
channel. At each output, he detects using an unbalanced Mach-Zehnder interferometer terminated by two single-photon detectors.
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phase modulators at every clock cycle allows Alice to
change the intensity of each polarization pulse (μH;i and
μV;i, where i ∈ f1; 2; 3g is the three decoy state intensities)
for decoy state modulation. For every clock cycle, two
pulses are generated—a reference pulse (weak or strong)
and a signal pulse—in both polarizations. She then encodes
her bit choice and basis choice by independently choosing
the relative phases ϕA;H and ϕA;V between the two
horizontal and vertical pulses, respectively. Each relative
phase is encoded using one of the two external phase
modulators. Referring to Fig. 4, the relative phase ϕA;H is
encoded using the top external phase modulator and ϕA;V is
encoded using the bottom external phase modulator.
Choosing the relative phase f0; πg and fπ=2; 3π=2g
corresponds to bit values f0; 1g in the Z and X basis,
respectively. Phase randomization is achieved by applying
a random phase offset on both the reference and signal
pulses—chosen independently for each polarization. Since
each orthogonal polarization mode is modulated independ-
ently of each other, we can consider each mode being an
independent quantum channel.
The quantum channel, in addition to loss, applies a

drifting polarization unitary transformation. Bob uses
another copy of the silicon photonics chip to undo the
unitary transformation of the channel, such that Alice’s
horizontal pulses exits the chip through the top grating
coupler and Alice’s vertical pulses through the bottom
grating coupler. (Bob also has to correct for possible
polarization drifts of the channel using his silicon chip.)
For each polarization, Bob detects the signals using an
unbalanced Mach-Zehnder interferometer, which interferes
the reference pulse and the signal pulse. Bob chooses his
detection basis by either applying a 0-phase shift on ϕB;H=V
for the Z basis or a π=2-phase shift on ϕB;H=V for the X
basis. The pulses would arrive at Bob’s detectors in three
different time slots: early, middle, and late. Bob keeps only
the middle clicks which are produced from the interference.
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