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Abstract: Interference of standing waves in electromagnetic resonators forms the
basis of many technologies, from telecommunications [1] and spectroscopy [2] to de-
tection of gravitational waves [3]. However, unlike the confinement of light waves
in vacuum, the interference of electronic waves in solids is complicated by boundary
properties of the crystal, notably leading to electron guiding by atomic-scale poten-
tials at the edges [4–7]. Understanding the microscopic role of boundaries on co-
herent wave interference is an unresolved question due to the challenge of detecting
charge flow with submicron resolution. Here we employ Fraunhofer interferometry
to achieve real-space imaging of cavity modes in a graphene Fabry-Pérot (FP) res-
onator, embedded between two superconductors to form a Josephson junction [8].
By directly visualizing current flow using Fourier methods [9], our measurements re-
veal surprising redistribution of current on and off resonance. These findings provide
direct evidence of separate interference conditions for edge and bulk currents and
reveal the ballistic nature of guided edge states. Beyond equilibrium, our measure-
ments show strong modulation of the multiple Andreev reflection amplitude on an off
resonance, a direct measure of the gate-tunable change of cavity transparency. These
results demonstrate that, contrary to the common belief, electron interactions with
realistic disordered edges facilitate electron wave interference and ballistic transport.

Graphene provides an appealing platform to explore “electron-optics” due to the ballistic nature of
wavelike carriers and ability to engineer transmission of electronic waves in real space using electro-
static potentials [10–17]. In particular, the electronic analog to refractive index is the Fermi energy,
which is tunable via electrostatic gating [11, 18]. Because the gapless spectrum of Dirac materials
enables continuous tunability of carrier polarity, positive and negative index of refraction regions can
be combined in bipolar structures that form the building blocks of Veselago “electronic lenses” [15],
Fabry-Pérot (FP) interferometers [11–15, 17], and whispering gallery mode cavities [19]. Electronic
analogs to optical interferometers attract attention because relativistic effects such as hyperlensing
and phase-coherent Klein transmission provide capabilities beyond conventional optics [10–17, 20].
Here we investigate the simplest analog to an optical interferometer, the electron FP resonator, which
consists of standing electron waves confined between two reflective interfaces [21, 22]. Despite ex-
tensive exploration in the momentum domain, in which Fermi momentum is simply tuned with a gate,
little information is available about the real-space distribution of current flow due to the challenge of
imaging current paths with submicron resolution. Furthermore, in real devices, atomically sharp po-
tentials at the edges of graphene can confine electron waves into guided edge modes, in analogy to the
guiding of light in optical fibers [4–7], as we have demonstrated experimentally in prior work [23]. To
investigate the nature of these boundary currents, we measure the interference of standing waves in a
graphene Josephson junction and image the real space distribution of supercurrent flow using Fraun-
hofer interferometry [9]. By visualizing the spatial structure of current-carrying states in the cavity
using Fourier methods, our measurements disentangle edge from bulk current flow and highlight the
surprising role of the crystal boundaries.

In a coherent electron cavity, quantum interference of electron waves replaces classical diffusion
as a key feature of electronic transport [21, 22]. In our system, a pair of superconducting electrodes
is coupled to a graphene membrane, defining a ballistic cavity between the two graphene-electrode
interfaces. As the Fermi wavelength in the cavity is tuned with a gate, the quantized energy levels of
the cavity are moved on and off resonance with the Fermi energy of the superconducting leads, thus
inducing an oscillatory critical current whose period satisfies the FP interference conditions. Due
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to the chiral nature of fermions in monolayer and bilayer graphene, at zero magnetic field carrier
trajectories with an incidence angle θ and refraction angle angle θ′ produce a contribution to FP
fringes in the single-particle transmission probability of the form

(1) T (θ) ∼ |t1(θ)|2|t2(θ)|2
|1− r1(θ)r2(θ)e2ik‖L|2

, k‖ = k cos θ′

where t1,2 and r1,2 are the angle-dependent transmission and reflection amplitudes for the two p-n
junctions. The resulting fringes are dominated by the angles for which both the transmission and
reflection are reasonably high (the first harmonic of FP fringes is at its brightest when the product of
transmission and reflection coefficients |t(θ)|2|r(θ)|2 takes a maximum value). In general, a spread
of angles for different trajectories in the bulk gives rise to a spread of the FP oscillation periods,
somewhat reducing the fringe visibility in the net current. In contrast, no suppression is expected for
interference fringes due to edge modes, as discussed in detail later.

We employ proximity induced superconductivity to shed light on the microscopic nature of electron
interference in a graphene Josephson resonator [24–27]. On a practical level, graphene provides an
accessible interface for superconducting electrodes because it is purely a surface material, unlike 2D
electron gases embedded in semiconductor heterostructures. Although graphene is not intrinsically
superconducting, proximity-induced superconductivity can be mediated by phase coherent Andreev
reflection at the graphene/superconductor interface. This process features an electron-hole conversion
by the superconducting pair potential that switches both spin and valley to preserve singlet pairing and
zero total momentum of the Cooper pair [28]. In this study, we employ gated mesoscopic Josephson
junctions consisting of bilayer graphene suspended between two superconducting Ti/Al electrodes, as
well as a graphene device on hBN. The superconductors serve three roles: (1) they create electrostatic
potentials that confine electron waves, serving as electronic analogs to mirrors (2) superconducting
interferometry can extract spatial information on how current flows through the system, and (3) be-
yond equilibrium, scattering events between the superconductors and graphene (multiple Andreev
reflections) depend critically on resonance conditions and reveal how the resonator couples to the
outside world.

A schematic of a suspended graphene Josephson junction is provided in Figure 1a. To access the
ballistic regime, we developed a new method to isolate the flake from charge disorder in the underly-
ing dielectric by suspending it over the back gate electrode, described in detail in the Supplementary
Methods. This approach combines the high purity of suspended devices with superconductivity en-
ables creation of ballistic waveguides where the mean free path le of electrons exceeds channel length
L. We note that similar results are also obtained on a gate-defined resonator in monolayer graphene
encapsulated in hBN, discussed later, which enables a higher degree of electronic control over the
cavity while preserving sample quality.

The superconducting leads serve not only as electronic probes but also induce a resonant electron
cavity in the scaling limit le > L (Fig. 1b) [21, 22]. The graphene in the immediate vicinity of
the Ti/Al contact is n-doped by charge transfer [29], forming an intrinsic n-n or n-p junction near
the interface when the graphene has electron or hole carriers, respectively. We exploit contact in-
duced doping to define the resonator because it is scalable to ultrashort channel lengths, provides
electrostatic barriers that are sharp compared to the electron wavelength, and is less complex than
gate-defined methods [30–33]. Analogous to an optical Fabry-Pérot cavity, the n-p junctions serve
as the electronic counterparts to mirrors while the ballistic graphene channel serves as an electron
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waveguide. The Fermi wavelength λF of electrons in the cavity is directly tunable with a gate elec-
trode which controls the carrier density n.

Fabry-Pérot (FP) resonances in ballistic junctions arise due to reflection from p-n junctions formed
near superconducting leads when carrier polarity in the graphene region is opposite to the polarity
of contact doping. Figure 1b shows a plot of the normal resistance Rn, obtained by sweeping the
gate voltage Vb at a fixed bias exceeding Ic. We observe well-resolved resistance oscillations at small
positive carrier densities (Vb < 0) when n-p-n junction formation is favored and monotonic behavior
when doping is unipolar. The dips in Rn coincide with carrier densities satisfying the constructive
interference condition 2d = mλF for electron waves in a resonator, where d is the effective cavity
length and m is an integer. Sweeping the gate voltage changes the Fermi energy in the graphene and
hence the Fermi wavenumber, given by kF = 2π/λF =

√
πn for a 2D Fermi disk with fourfold

degeneracy. The correspondence to FP interference conditions can be seen more clearly in Supple-
mentary Figure S1, which shows that Rn is periodic as a function of 2d/λF . Reproducibility of the
oscillation period is demonstrated in three devices of 500 nm length (Fig. S1), while shorter junc-
tions exhibit larger periods as expected. Quantum confinement between the cavity “mirrors” gives
rise to discrete energy levels with spacing hvF /2d, where vF = ~kF /m∗ is the Fermi velocity and
and m∗ is the effective electron mass in bilayer graphene. We evaluate this energy scale to be of the
order 1 meV using the height of FP diamonds, as measured using voltage bias spectroscopy (Fig. S1).

The interplay between cavity resonances and supercurrent is evident from a resistance colormap
as a function of IDC and Vb (Fig. 1c-d) showing critical current oscillations whose period satisfies
FP interference conditions, consistent with supercurrent propagation via ballistic charge carriers [34].
As λF in the cavity is tuned with the gate, the quantum levels of the cavity are moved on or off reso-
nance with the Fermi energy of the superconducting leads, thus inducing a oscillating critical current
periodic in

√
n for bilayer graphene. This phenomena is observed in two independent systems: (1)

suspended bilayer graphene resonators defined by contact-induced doping (Fig. 1d) and (2) a gate-
defined resonator in monolayer graphene on hBN (Fig. 1e and Supplementary Fig. S2), both of which
exhibit similar behavior. In total, five suspended bilayer devices are studied with a lithographic dis-
tance L between superconducting contacts of 350 to 500 nm and contact widthW of 1.5 to 3.2 µm, in
addition to one gate-defined monolayer device with cavity dimensions of L = 100 nm and W = 2.7
µm (see Supplementary Methods). Figure 1e displays critical current modulations in a gate-defined
monolayer resonator whose oscillations are periodic in n, in agreement with a monolayer FP model
for cavity length ∼ 100 nm.

Next we employ superconducting interferometry as a tool to spatially resolve optics-like phenom-
ena associated with electron waves confined within a ballistic graphene Josephson junction. Unlike
experiments in 1D systems [24, 25, 35], one can thread flux through the junction and explore the rich
interplay between magnetic interference effects and cavity transmission. Upon application of a mag-
netic field B, a flux Φ penetrates the junction area and induces a superconducting phase difference
∆φ(x) = 2πΦx/Φ0W parallel to the graphene/contact interface, where Φ0 = h/2e is the flux quan-
tum, h is Planck’s constant, and e is the elementary charge. When a flux penetrates the junction area,
the critical current Ic(B) exhibits oscillations in magnetic field given by:

(2) Ic(B) =

∣∣∣∣∣

∫ W/2

−W/2
J(x) · e2πiLBx/Φ0dx

∣∣∣∣∣
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where L is the distance between superconducting electrodes (Fig. 1) [9, 36]. This integral expression
applies in the wide junction limit, relevant for our system, where L � W and the current density
is only a function of one coordinate. Because the critical current Ic(B) equals magnitude of the
complex Fourier transform of the real-space supercurrent distribution J(x), the shape of the interfer-
ence pattern is determined directly by the spatial distribution of supercurrent across the sample [9,37].

To visualize current flow associated with interfering electron waves in graphene, we measure su-
percurrent modulations inB field that arise from a Fraunhofer diffraction. Figure 2a is a color map of
critical current Ic as a function of gate voltage and magnetic field. Each pixel is obtained by measur-
ing the DC voltage Vsd across the junction as a function as a function of applied DC current bias IDC
and extracting the maximum derivative dVsd/dIDC . In a conventional graphene Josephson junction
with uniform current density, the normalized critical current Ic(B)/Ic(0) = | sin(πΦ/Φ0)/(πΦ/Φ0)|
is described by Fraunhofer diffraction and should be independent of gate voltage. Our results exhibit
a striking departure from this picture and feature nodes in Ic(B)/Ic(0) as a function of both Vb andB
(as shown in Supplementary Fig. S3). Figure 2a and Fig. S3 display the different behavior of Ic ver-
susB on and off resonance, where the red and green dotted lines indicate gate voltages corresponding
to on and off resonance conditions, respectively. (Reproducibility of this phenomenon in additional
samples is shown in Supplementary Fig. S4.) Using Eq.(2), one can extract an effective spatial distri-
bution of the supercurrent J(x) by taking the inverse Fourier transform of the above Ic(B) line plots
with the technique of Dynes and Fulton [9] (see Supplementary Methods). As revealed in Fig. 2b, the
normalized spatial distribution features bulk-dominated current flow on resonance and an enhanced
edge current contribution off resonance.

Inspired by the relation between the spatial current distribution J(x) and critical current Ic(B) in
Eq. (2), we directly model the spatial distribution of current paths for bilayer graphene in the FP
regime (Fig. 2c-e). These calculations take into account guided edge modes due to band-bending at
the crystal boundaries, which have been experimentally observed in Ref. [23]. This electron guiding
effect can be quantified by an edge potential, which is capable of confining carriers to edge-defined
‘waveguides’ in analogy to the confinement of photons in fiber optic cables. Energies of these edge
states lie outside the bulk continuum (Fig. 2c), which ensures an evanescent-wave decay of carrier
states into the bulk. The resulting states are effectively one-dimensional, propagating as plane waves
along the graphene edges. Applying the FP quantization condition in the p-n-p region leads to a
sequence of FP maxima positioned at kn = πn/L, where n is an integer and L represents distance
between superconducting contacts. These quasi-1D states guided along the edge feature head-on
transmission and reflection and hence should produce much stronger FP fringes than the bulk states.

As shown in the theoretical dispersion in Fig. 2c, the interference conditions in the bulk and at
the edge should not coincide due to the difference in the carrier dispersion at the edge and in the
bulk as well as due to the angle-dependence of the FP period for the latter carriers. Hence a gradual
increase of doping will trigger repeated switching between the bulk-dominated and edge-dominated
regimes, with the current distribution switching from an approximately uniform to edge like, ac-
cordingly. Qualitatively, this would be manifested in the dependence of measured critical current on
applied magnetic field, switching between Fraunhofer and more SQUID-like behavior (Fig. 2a).

To quantify these phenomena, we model FP resonances using the approach described in Ref. [23].
Assuming that the edge potential is sufficiently short-ranged, we approximate it with a delta function.
We obtain the density of persistent current along the edge (chosen to be along y axis) from the exact
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Green’s function G in a mixed coordinate-momentum representation:

(3) j(ε, x) = − π

Im

∑

ky ,x′=x

[
G(ε, x, x′, ky)Jy

]

where Jy is the operator for current along the edge (see Eq. (8-9) in supplement of Ref. [23]). The
sum in Eq.(3) runs over the values kn = πn/L for one sign of n. Each term in Eq.(3) has poles
corresponding to bounded states for the momentum value kn, each of which corresponds a to current
maximum at the edge (see Fig. 2e). The predicted spatially resolved current density j(x) across the
sample as function of energy is shown in Figure 2e. To translate this into an experimentally observ-
able quantity, we model Fraunhofer interference pattern Ic(B) using the theoretical amplitude and
spatial distribution of edge modes (see Supplementary Materials). This result, plotted in Fig. 2d,
captures the key features of the data, namely the redistribution of current on and off resonance as well
as the suppression of side lobes’ intensity on resonance. Thus, the measurements are consistent with
a model that features separate FP interference of guided-wave edge currents, in parallel to interfer-
ence of bulk modes. This further suggests that the quasi-1D edge currents previously observed [23]
have ballistic character. Despite its simplified nature, which neglects disorder and finite tempera-
ture effects, our model captures the essential features of the measurements. While the edge potential
featured in this simulation accommodates a single edge channel, we note that the number of guided
modes may exceed one for stronger potentials. In this case, each mode would contribute indepen-
dently to the interference pattern, giving rise to fringes with complicated multi-period structure at the
edge.

We employ yet another property of superconductor-normal-superconductor (SNS) systems to gain
insight into the coupling between the cavity modes with the superconducting reservoirs. Because
the phenomenon of multiple Andreev reflection (MAR) is known to be extremely sensitive to the
coupling between electrons in the normal metal and the superconductor, we use voltage bias spec-
troscopy to map out the interplay between MAR oscillation amplitude and cavity transmission (Fig.
3a,b). The millielectronvolt energy scale associated with FP interference substantially exceeds the
Al superconducting gap ∆, allowing one to study the system close to equilibrium conditions for the
resonator. A colormap of resistance Rn as a function of applied voltage bias VDC and gate voltage Vb
shows modulations due to FP interference (Fig. 3b). Well defined MAR peaks appear at 2∆,∆, and
2∆/3 when the density is tuned off resonance, while MAR is completely suppressed on resonance,
as visible in line cuts of resistance on and off resonance in Fig. 3c (additional data sets are provided
in Supplementary Figs. S5-S6). It is notable that the amplitude of the multiple Andreev reflections
depends strongly on cavity resonance conditions, thereby providing a direct measure of the tunable
coupling between the resonator and the outside world.

The change in visibility of MAR on and off FP resonances is most naturally explained by changes
in the distribution of transmission eigenvalues, which can be understood using the following model.
Because supercurrent is predominately transmitted by bulk modes, as indicated by the Fraunhofer
interferometry data (Fig. 2), we simplify our analysis by focusing on resonances of bulk states. The
magnitude of multiple Andreev reflection peaks is small for modes with high transmission probability
due to the absent suppression of higher order scattering processes [38]. In a FP cavity a larger fraction
of the current is carried by highly transmitting modes when the cavity is tuned to the resonant wave
length. In a short junction different modes contribute independently to the current, producing the
observed multiple Andreev reflection pattern. In our junction, ξ = ~vF /∆ ≈ 450 − 700 nm, while
the junction size is ≈ 350 nm, so we expect the short junction limit to qualitatively hold.
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In order to compare this model to the observed experimental data, we have modeled the current
through the junction as a sum of contributions of the modes with high (∼ 0.9), medium (∼ 0.6),
and low transmission (∼ 0.3) coefficient (Fig. S7). This separation was chosen to avoid overfitting,
while keeping the qualitative features of I-V relationships with different transparencies. We then
approximate

(4) I(V ) =
∑

n

ρ(Tn) · I(V, Tn),

with Tn the transmission probability in various channels, ρ the density of transmission eigenvalues,
and I(V, T ) the contribution of a single mode with transmission probability T to the total current,
calculated in the short junction limit following Ref. [38]. Fitting the model to the measured conduc-
tance curves on and off resonance (Fig. 3c,d and Supplementary Fig. S7) shows that the junction
transparency is increased on resonance and suggests good qualitative agreement between this theo-
retical interpretation and the experiment.

We obtain the estimated contributions of each Tn by fitting the measured I-V traces using the
Eq. (4) constrained by the condition ρ(Tn) > 0. The fits show no systematic error, and increas-
ing the number of Tn leads to noisier fits, indicating overfitting. The coefficient ρ corresponding to
large transmissions increase, while the ones corresponding to low transmissions decrease whenever
the system is on resonance, at values of the back gate voltage where the normal state conductance is
also peaked (see Supplementary Fig. S7). The normal state conductance estimated using our model
GN = g0

∑
n Tnρ(Tn) is smaller than the measured one for all back gate voltages, which may be due

to deviations from the short junction theory, or the nonlinear behavior of the p-n junctions.

In summary, we utilize different aspects of proximity-induced superconductivity, particularly Fraun-
hofer interferometry and Andreev scattering, as new tools to resolve optics-like phenomena associated
with electron waves confined within a ballistic graphene Josephson junction. This enables real-space
visualization of cavity modes in a graphene FP resonator, which reveals surprising redistribution of
current on and off resonance and provides direct evidence of the ballistic nature of guided edge cur-
rents. These results constitute a strong departure from conventional Josephson behavior in graphene
and motivate further exploration of new effects at the intersection of superconductivity and optics-like
phenomena.
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FIGURE LEGENDS

Figure 1. Interplay between superconductivity and the Fabry-Pérot interference in a bal-
listic graphene Josephson junction. (a) Gated mesoscopic Josephson junction consisting of bilayer
graphene suspended between two superconducting Ti/Al electrodes. L is the lithographic distance
between contacts and W is the junction width. In the presence of magnetic field, a flux threads the
junction area. A current bias is applied between the electrodes and the voltage drop across the de-
vice is recorded. A voltage applied to the back gate electrode Vb tunes the Fermi wavelength λF
in the cavity. (b) Plot of the normal resistance, obtained by sweeping the gate voltage Vb at a fixed
bias exceeding Ic. Data sets in panels (b-d) are from device B1. Left inset: Charge transfer at the
boundaries of the superconducting electrodes leads to intrinsic n-doped regions near the contacts,
forming an electronic resonator when the bulk is tuned to hole doping. Dips in resistance appear
when constructive interferences conditions in the cavity are satisfied, 2L = mλF . Right inset: When
the bulk is tuned to electron doping, standing waves are not formed, leading to monotonic resistance.
(c, d) Plots of resistance as a function of DC current bias and back gate voltage. The critical current
Ic oscillates with a period that satisfies the Fabry-Pérot (FP) interference conditions, consistent with
supercurrent propagation via ballistic charge carriers. (e)Differential resistance of a gate-defined FP
resonator in monolayer graphene on hBN (device M1), as a function of top gate voltage and DC bias
current when the back gate voltage is held fixed at -1.75 V. The critical current, defined by the width
of zero resistance region along the current axis, oscillates with the same periodicity as normal state
resistance, in agreement with a FP model for cavity length ∼ 100 nm.

Figure 2. Spatially resolved supercurrent imaging in a ballistic graphene cavity. (a) Plot of
critical current Ic as a function of back gate voltage Vb and applied magnetic field B. Each pixel
was obtained by measuring the DC voltage Vsd across the junction as a function as a function of DC
current bias IDC and extracting the maximum derivative dVsd/dIDC . Red and green dotted lines
indicate on and off resonance conditions, respectively. Data was collected from device B2. (b) Real-
space normalized supercurrent density distribution J(x)/Jmax(x) extracted from the Ic(B) data in
(a) using Fourier techniques (see Supplement for details). (c) Spectrum of bilayer graphene with small
edge potential, for which one edge mode dominates. (d) Theoretical plot of critical current Ic as a
function of barrier energy and applied magnetic field in presence of edge modes. Bulk and edge cur-
rents produce distinct FP patterns due to different dispersion laws and angle dependent transmission
of bulk modes. (e) Theoretical calculation of spatially resolved current density across the sample as
function of energy. Here p0 = λm∗/2~, E0 = p2

0/2m
∗ and x0 = ~/p0 with m∗=0.04 me (BLG band

mass) and delta function potential strength λ = 0.5 eV·nm (see Ref. [23]). Energies corresponding
to quantized momenta are represented by horizontal red lines.

Figure 3. Interplay between multiple Andreev reflections and cavity transmission. (a) Schematic
illustration of the mechanism of multiple Andreev reflection in a graphene Josephson junction for
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voltage bias eV = 2∆/3. (b) Right panel: A colormap of resistance Rn as a function of applied
voltage bias VDC and gate voltage Vb shows modulations due to Fabry-Pérot interference. Left panel:
Derivative plot dRn/dVDC for the data on the right. Data sets in panels (c,d) are from device B3.
(c) Line cuts of resistance versus DC voltage bias on (Vb=0.3 V, red curve) and off (Vb=0.14 V,
blue curve) resonance. Well defined MAR peaks appear at 2∆,∆, and 2∆/3 when the density is
tuned off resonance, while MAR is completely suppressed on resonance. (d)Theoretically obtained
conductance profiles in the short junction limit, as a function of applied bias voltage. The curve corre-
sponding to high transmission, Ghigh (red) is computed for a single mode with transmission 0.9. The
low transmission curve (blue) is obtained for 4 modes with transmission 0.6. Lower transparencies
lead to the formation of conductance resonances at bias voltages corresponding to 2∆/3, ∆, and 2∆.
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Figure 1
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Figure 2
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Figure 3
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Supplementary Materials and Methods

Fabrication and design of ballistic graphene Josephson junctions

Suspended Josephson junctions: We investigate suspended Josephson junctions of two types.
The first type, which corresponds to data shown in Fig. 1b-d and Supplementary Fig. S1, features

superconducting electrodes in the interior of the flake. Graphene is mechanically exfoliated directly
onto on a 300 nm SiO2 dielectric layer that coats a doped silicon wafer serving as a global back
gate. Next, thin Cr/Au leads are defined using e-beam lithography in a pseudo-four probe geometry
in order to make electrical contact to the bilayer graphene device. These contacts are spaced roughly
1-1.5 µm apart in order to leave room for the superconducting contacts that will eventually define the
Josephson junction itself. These Cr/Au (3/30 nm) contacts are deposited using thermal evaporation,
followed by immersion in acetone for metal liftoff. Next, thick gold electrodes are defined in a way
that overlaps the outer edges of the thin contacts, thus maintaining electrical contact to the flake. The
thick electrodes serve a dual purpose: (1) to provide structural support and mechanically hold up the
entire suspended graphene Josephson junction and (2) provide an electrical connection between the
Josephson junction and the bondpads. After an evaporation mask is defined using e-beam lithogra-
phy, Cr/Au (3/200 nm) is deposited. To define the Josephson junction, a pair of rectangular Ti/Al
superconducting contacts are patterned in the interior of the flake and extending over the thin Cr/Au
leads to maintain electrical contact to the bondpads. The superconducting electrodes are patterned
using e-beam lithography, followed by thermal evaporation of a 10 nm Ti adhesion layer and a 70 nm
superconducting Al layer. Finally, in order to protect the superconductor from degradation in acid
during the suspension process, a PMMA polymer etch mask is defined over the superconducting con-
tacts using e-beam lithography. After development, the entire chip is immersed in a buffered oxide
wet etchant to remove 150 nm of the underlying SiO2 dielectric layer, leaving the Josephson junction
fully suspended. Immediately following the etch, the substrate is immersed in methanol, followed by
an acetone soak to dissolve the PMMA mask, after which the chip is again immersed in methanol and
dried in a critical point dryer.

The second type of suspended Josephson junction, which corresponds to the data in Fig. 2-3,
features superconducting electrodes that extend over the full width of the flake. This Josephson
geometry is preferable for imaging current flow due to the uniform distance between contacts and
rectangular junction dimensions. Devices are fabricated on a 300 nm SiO2 dielectric layer that coats
a doped silicon wafer that serves as a global back gate. Bilayer graphene flakes are deposited over
predefined narrow trenches that are etched into the SiO2 with a depth of 150 nm. Next, thin Cr/Au
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contacts and bondpads are defined using e-beam lithography in a pseudo-four probe geometry in or-
der to make electrical contact to the bilayer graphene device. These contacts are spaced far apart
on either side of the etched trench in order to leave room for the superconducting contacts that will
eventually define the Josephson junction itself. These Cr/Au (3/30 nm) contacts are deposited using
thermal evaporation. The devices are then immersed in acetone for metal liftoff, transferred im-
mediately into methanol, and carefully dried using a critical point dryer due the delicate nature of
suspended graphene membranes. To construct the Josephson junction, superconducting Ti/Al con-
tacts are patterned along the trench edges using e-beam lithography and with width large enough to
achieve electrical contact with the Cr/Au leads. The superconducting contacts are deposited using
thermal evaporation with the following procedure: a 10 nm Ti adhesion layer is deposited, followed
by a 50 nm layer of Al superconductor. As with the previous step, metal liftoff is conducted by im-
mersion in acetone and methanol, followed by drying in a critical point dryer. The motivation for
using Cr/Au bondpads is to achieve the best possible electrical connection to the gold bonding wires
and sample holder pins. Aluminum, by contrast, oxidizes upon exposure to air and forms intermetal-
lic compounds at the interface with gold bonding wire, which would be expected to degrade electrical
contact. Devices are current annealed in vacuum at dilution refrigerator temperatures in order to re-
move organic processing residues and enhance quality. All low temperature data is collected using
standard lockin measurement techniques in a Leiden Cryogenics Model Minikelvin 126-TOF dilution
refrigerator with a base temperature of ∼ 10 mK.

Suspended Josephson junction device dimensions:
Sample B1: Fig. 1b-d, Supplementary Fig. S1: main panel plot, right insets; blue curve in the left

inset. Type 1 geometry. Distance between superconducting electrodes: 500 nm. Width of supercon-
ducting contacts (defines transverse dimension of junction): 1.7 µm.

Sample B2: Fig. 2a-b, Supplementary Fig. S3: Type 2 geometry. Distance between superconduct-
ing electrodes: 350 nm. Junction width: 1.7 µm.

Sample B3: Fig. 3, Supplementary Fig. S6: Type 2 geometry. Distance between superconducting
electrodes: 350 nm. Junction width: 1.7 µm. Note: Data sets B2 and B3 are from the same physical
device but are collected after different current annealing iterations and thus have different disorder
configurations.

Sample B4: Supplementary Fig. S1: green curve in the left inset. Type 1 geometry. Distance
between superconducting electrodes: 500 nm. Width of superconducting contacts (defines transverse
dimension of junction): 3.2 µm.

Sample B5: Supplementary Fig. S1: red curve in the left inset. Type 1 geometry. Distance between
superconducting electrodes: 500 nm. Width of superconducting contacts: 1.65 µm.

Sample B6: Supplementary Fig. S4-S5: Type 2 geometry. Distance between superconducting
electrodes: 350 nm. Junction width: 1.5 µm.

Sample B7: Supplementary Fig. S4: Type 2 geometry. Distance between superconducting elec-
trodes: 350 nm. Junction width: 1.5 µm. Note: Data sets B6 and B7 are from the same physical
device but are collected after different current annealing iterations and thus have different disorder
configurations.

Josephson junctions on hBN: To investigate a separate device design, the gate-defined FP cavity,
we also consider one dual-gated monolayer graphene Josephson junction encapsulated in hexangonal
boron nitride (hBN). By isolating the graphene from the surface roughness and charge disorder asso-
ciated with the underlying silicon dioxide gate dielectric, hBN substrates enable high device quality
to be achieved, which is a crucial ingredient for observing ballistic charge transport. This Josephson
junction has a distance of 750 nm between the superconducting contacts and a flake width of 2.7 µm.
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The top gate length, which defines the size of the FP resonator, is ∼100 nm. The superconducting
electrodes consist of an adhesion layer of Ti (10 nm) and a superconducting layer of Al (60 nm). The
top gate consists of Ti/Au (5/50 nm). The thicknesses of the top and bottom hBN flakes that encap-
sulate the graphene are ∼19 nm and ∼30 nm, respectively, as measured by atomic force microscopy
(AFM).

Encapsulated Josephson junction device dimensions:
Sample M1: Fig. 1e, Supplementary Fig. S2: Distance between superconducting electrodes: 750

nm. Junction width: 2.7 µm. The top gate length: ∼100 nm.

Fourier method for extraction of supercurrent density distribution

In order to disentangle edge from bulk current flow through the resonator, we employ the Fourier
techniques of Dynes and Fulton to reconstruct the real-space supercurrent distribution from the mag-
netic interference pattern Ic(B). This procedure, described in detail in Ref. (37), is briefly summa-
rized here. When a magnetic field B is applied perpendicular to the junction area, the critical current
Ic(B) through a Josephson junction is:

(1) Ic(B) = |Ic(B)| =
∣∣∣∣
∫ ∞

−∞
J(x) exp(2πi(L+ lAl)Bx/Φ0)dx

∣∣∣∣
where x is the dimension along the width of the superconducting contacts (labeled in Fig. 1), L is the
distance between contacts, lAl is the magnetic penetration length scale (determined by the London
penetration depth of the superconductor and flux focusing), and Φ0 = h/2e is the flux quantum. This
integral expression applies in the narrow junction limit where L�W , relevant for our system.

Observing that Ic(B) represents the complex Fourier transform of the current density distribution
J(x), one can apply Fourier methods to extract the spatial structure of current-carrying electronic
states. Because the antisymmetric component of J(x) vanishes in the middle of the junction, the
relevant quantity for analyzing edge versus bulk behavior is the symmetric component of distribution.
By reversing the sign of Ic(B) for alternating lobes of the superconducting interference patterns, we
reconstruct Ic(B) from the recorded critical current. One can determine the real-space current density
distribution across the sample by computing the inverse Fourier transform:

(2) Js(x) ≈
∫ ∞

−∞
Ic(B) exp(2πi(L+ lAl)Bx/Φ0)dB

We employ a raised cosine filter to taper the window at the endpoints of the scan in order to reduce
convolution artifacts due to the finite scan range Bmin < B < Bmax. This the explicit expression
used is:

(3) Js(x) ≈
∫ Bmax

Bmin

Ic(B) cosn(πB/2LB) exp(2πi(L+ lAl)Bx/Φ0)dB

where n = 0.5− 1 and LB = (Bmax −Bmin)/2 is the magnetic field range of the scan.
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Supplementary Figures

FIGURE S1. Characterization of Fabry-Pérot interference conditions in ballis-
tic graphene Josephson junctions. Main panel: Plot of the normal resistance Rn,
obtained by sweeping the gate voltage Vb at a fixed bias exceeding Ic (repeated here
from Fig. 1b for reference to the other panels). Data was collected from sample
B1. Right inset: Fabry-Pérot diamonds obtained using voltage bias spectroscopy,
as shown in color maps of R(Ω) and its derivative dRn/dVb, as function of back
gate voltage Vb and voltage bias VDC . Data from sample B1. Left inset: Rn plotted
versus 2d/λF , where d is the effective junction length and λF is the Fermi wave-
length. By comparing the junction length L to the effective size d extracted from fits,
we determined that the contact-doped regions extend at most 100 nm into the chan-
nel, consistent with the results of scanning photocurrent studies. Reproducibility of
the oscillation period is demonstrated in three devices of length L = 500 nm. The
blue resistance curve is from sample B1, the green curve is from sample B4, and the
red curve is from sample B5 and offset by -250 Ω. Resonances marked by dips in
resistance appear when constructive interferences conditions are satisfied.
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FIGURE S2. Ballistic resistance oscillations in a gate-defined Fabry-Pérot inter-
ferometer on hBN. Normal state resistance of a monolayer graphene device on
hBN as a function of top gate when the back gate is held fixed at -1.75 V (resistance
line cut corresponds to the white dotted line in the inset). Data was collected from
sample M1. The oscillation period agrees with a Fabry-Pérot model with a cavity
length ∼ 100 nm. Inset shows that oscillation occurs in p-n-p and n-p-n regions,
which is characteristic of Klein tunneling in monolayer graphene. The oscillations
also suggest the ballistic nature of electronic transport in the locally gated region.
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FIGURE S3. Nontrivial current flow through a graphene Fabry-Pérot resonator,
as revealed by Fraunhofer interferometry. (a) Unsaturated map of the critical cur-
rent Ic(B) data from Fig. 2a, plotted over a full color scale range. (b) Plot of nor-
malized critical current Ic(B)/Ic(B = 0) from the data in Fig. 2a, indicating a non-
trivial dependence of Fraunhofer interference on cavity resonances. Red and green
dotted lines indicate on and off resonance conditions for the cavity, respectively. (c)
Real-space supercurrent density distribution J(x) extracted from the Fraunhofer in-
terference Ic(B) data in Fig. 2a using Fourier techniques. (Fig. 2b in the main text
is a plot of the real-space normalized supercurrent density distribution for this data
set.) Data was collected from sample B2.

FIGURE S4. Dependence of normalized Fraunhofer interference on cavity reso-
nances in additional samples. Plot of normalized critical current Ic(B)/Ic(B = 0),
indicating nontrivial dependence of Fraunhofer interference on cavity resonances.
Red dotted lines indicate on resonance conditions for the cavity. Data was collected
from samples B6 (panel (a)) and B7 (panel (b)), which exhibit qualitatively similar
behavior to sample B2 in Supplementary Fig. S3.
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FIGURE S5. Interplay between multiple Andreev reflection and cavity reso-
nances in an additional device. Experimental resistance profiles obtained using
voltage bias spectroscopy, measured at fixed back gate voltages Vb tuned to on or off
resonance conditions for the cavity (red or blue curves, respectively). The amplitude
of the multiple Andreev reflections, manifested in resistance dips at 2∆/n for integer
n, is strongly modulated by cavity transmission and thus exhibits suppression when
carrier density is tuned on-resonance. (a) Red curve: Vb = −0.7 V, (on-resonance,
corresponding to a dip in normal state resistance). Blue curve: Vb = −0.85 V,
(off-resonance, corresponding to a peak in normal state resistance). (b) Red curve:
Vb = −0.95 V (on-resonance); Blue curve: Vb = −1.025 V (off-resonance). In
panels (a) and (b), the red curves are offset by −500Ω for clarity. (c) All curves
from panels (a) and (b), plotted on the same resistance scale. Red curve: Vb = −0.7
V (on-resonance); dark blue curve: Vb = −0.85 V (off-resonance); magenta curve:
Vb = −0.95 V (on-resonance).; light blue curve: Vb = −1.025 V (off-resonance).
Data was collected from sample B6, which shows qualitatively equivalent behavior
to sample B3 in Fig. 3 of the main text.
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FIGURE S6. Additional multiple Andreev reflection data sets from sample B3.
More voltage bias spectroscopy data from sample in Fig. 3, taken at additional back
gate voltages. Red curve: Vb = −0.1 V (on-resonance); Blue curve: Vb = −0.3 V
(off-resonance).

FIGURE S7. Theoretical dependence of multiple Andreev reflection amplitude
on cavity transmission. (a) Theoretical resistance profiles as a function of applied
bias voltage, corresponding to the experimental data in Fig. 3c. The red curve (on
resonance, Vb = 0.3V ) shows suppressed MAR features, while in the blue curve (off
resonance, Vb = 0.5V ) MAR peaks appear at bias voltages 2∆, ∆, and 2∆/3. The
red curve has been shifted upwards by 0.015R0 for clarity. (b) Simulated resistance
map obtained by fitting the measured data to the short junction model, plotted con-
tinuously as a function of applied DC bias voltage V and back gate voltage. The
theoretical resistance profile is in good agreement with the experimental one (Fig.
3b), showing well defined MAR peaks when the system is off resonance, and sup-
pressed MAR features on resonance. (c) Mode contributions ρ (thick solid lines)
corresponding to large (red), medium (green), and small (blue) transmissions, as a
function of back gate voltage. The black and blue dashed lines show the normal state
conductance values from measurement and theory, respectively.


